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A method of analysis is developed for studying the whirl stab ility of rotor-bearing sys-
tems without the need to solve the governing di�erential equ ations of motion of such
systems. A mathematical model comprised of an axially symme tric appendage at the
mid span of a spinning shaft mounted on two dissimilar eight- coe�cient bearings is
used to illustrate the method. Su�cient conditions for asym ptotic stability of both the
translational and rotational modes of motion of the system h ave been derived. The
system stability boundaries presented graphically in term s of the various system non-
dimensionalized parameters a�ord a comprehensive demonst ration of the e�ects of such
parameters on system stability of motion.
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1. Introduction

In spite of the fact that the subject of dynamics and stability of rotor-bearing
systems has been the concern of engineers and scientists for more than a century, it
will persist as an active area of research and study for the foreseeable future.This
may be attributed to its various applications in many modern �elds in addition to
the increasing trend toward ultra-high speeds in rotating machinery. For an inclusive
historical background and a comprehensive literature review on the subject see [1].

The common approach adopted for investigating stability of rotor-bearing sys-
tems in most of the relevant literature depends mainly upon solving the set of system
governing equations of motion after being simpli�ed under certain assumptions and
after being transformed into an eigenvalue problem. Then, from the solution ofthe
exponential growth (unstable) or decay (stable). the stability criteria are estab-
lished based on the resulting eigenvalues and their system parametric dependence.
Typical studies are [2] to [6]. As obvious from literature review, it is acommon fea-
ture in the rotor-bearing problems that the resulting governing deferential equations
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of motion of the system are so di�cult and complex that seeking their analytical
solution is always tough task if not impossible unless major simpli�cations and
assumptions are imposed on them.

The main motivation for this work is to gain an inclusive understanding of the
role played by each of the various system parameters on the whirl stabilityof its
motion without solving the resulting tough set of governing di�erential equati ons of
motion. This objective has been actualized by adopting Routh-Hurwitz criterion as
a simple technique, which can a�ord a solution to the question of stability of motion
of linear autonomous dynamical systems without solving the corresponding govern-
ing di�erential equations of motion. The stability analysis has been performed
on a rotor-bearing system modeled as an axially symmetric appendage at the mid
span of a spinning shaft mounted on two dissimilar 8-coe�cient end bearings. The
governing di�erential equations of motion of the system have been derived. The
coupling between the translational and rotational modes of motion has been elim-
inated after linearizing the system equations of motion. Routh-Hurwitz criterion
has been applied on each mode to get su�cient conditions of asymptotic stability
of whirling motion of the system. Based on the developed stability conditions, the
system stability regions were illustrated graphically in terms of the various system
non-dimensionalized parameters.

2. Problem Formulation

Figure 1 Appendage-shaft-bearing model

The mathematical model as depicted in Fig. 1 consists of a disk (or generally an
axially symmetric appendage) which massm� at the mid span of a spinning shaft of
length l and massm mounted on a pair of massless dissimilar nonlinear 8-coe�cient
bearings (Fig. 2). It is assumed that

1. the shaft is straight, balanced, rigid and axially symmetric,

2. the system's rotational and translational displacements are small,

3. axial and torsional constraints are negligible,
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4. aerodynamic e�ects are not included, and,

5. the static deections are negligible compared to the dynamic e�ects.

Figure 2 8-coe�cient bearing model

Figure 3 Shaft coordinate axes

In the dynamic equilibrium con�guration of the system, the shaft centerline is
considered to be along theZ -direction of a rotating X , Y , Z coordinate system
described by unit vectors�i , �j , �k. Due to the exibility of the two end bearings. the
center of mass of the system is going to translate in the�i and �j directions with the
in�nitesimal displacements x and y respectively, and the shaft-appendage system
is going to rotate with the angular velocities _� �i and _� �j in addition to the spinning
velocity 
 �k. The coordinate system transformations used for the formulation of the
problem kinematics is illustrated in Fig. 3. The position vector �r (z; t) of a typical
di�erential element at a distance z from o along the shaft can be written as:

�r (z; t) = x(z; t)�i + y(z; t)�j : (1)
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The resultant angular velocity �! of the shaft is

�! = �
 + _�� + _�� ; (2)

which can be written as

�! =
�

_� � � 

�

�i +
�

_� � � 

�

�j +
�


 + � _�
�

�k ; (3)

where � and � are the shaft in�nitesimal rotational displacements in the ( x � z)
and (y � z) planes respectively as depicted schematically in Fig. 4.

Figure 4 Schematic diagram illustrating the translational and rota tional displacements

Di�erentiating Eq. (1) with respect to time, the velocity vector �_r (z; t) is

�_r (z; t) =
h

_x � y
 � y� _�
i

�i +
h

_y + x
 + x� _�
i

�j +
h
y( _� � � 
) � x( _� � � 
)

i
�k : (4)
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The kinematic energy of the systemT can then be obtained as:

T =
1
2

(m + m� )
n

_x2 + _y2 + x2 _� 2 + y2 _� 2 + 2 _� (x _y � y _x) � 2xy _� _� +

2

h
x _y � y _x + x2(� _� � � _� ) + xy(� _� + � _� )

i
+ 
 2 �

x2 + y2� o
+ (5)

1
2

(I d + I �
d )

n
_� 2 + _� 2 � 2
( � _� + � _�

o
+

1
2

(I p + I �
p )

�

 2 + 2
 � _�

�
;

where I d and I �
d are the diametral mass moment of inertia of shaft and disk respec-

tively where I p and I �
p are the polar ones. The strain energy of the bearing systems

is [7]:

V =
1
2

��
K x 1 x 1 x2

1 + K x 1 y1 x1y1 + K y1 x 1 y1x1 + K y1 y1 y2
1

�
+

�
K x 2 x 2 x2

2 + K x 2 y2 x2y2 + K y2 x 2 y2x2 + K y2 y2 y2
2

��
; (6)

in which K xx and K yy are the principal (direct) sti�ness coe�cients of the bearing,
K xy and K yx are the cross coupling sti�ness coe�cients, x and y denote the de-
ections of the bearing center and the subscripts 1 and 2 refer to the left and right
bearing respectively. The Rayleigh's dissipation energy of the bearing system is [8]:

D =
1
2

��
Cx 1 x 1 _x2

1 + Cx 1 y1 _x1 _y1 + Cy1 x 1 _y1 _x1 + Cy1 y1 _y2
1

�
+

�
Cx 2 x 2 _x2

2 + Cx 2 y2 _x2 _y2 + Cy2 x 2 _y2 _x2 + Cy2 y2 _y2
2

��
; (7)

where Cxx and Cyy are the bearing principal damping coe�cients while Cxy and
Cyx are the bearing cross coupling damping coe�cients.

The state of motion of the dynamical system under consideration is completely
de�ned by the eight state variables x1, y1, x2, y2, x, y, � , and � . However, it is seen
from geometry of the system in Fig. 4 that

x1 = x �
l
2

� ;

x2 = x +
l
2

� ;

y1 = y �
l
2

� ; (8)

y2 = y +
l
2

� :

Therefore, the previous relations in Eq. (8) reduce the state variables necessary to
de�ne the system to the four state variables (or generalized coordinates),x, y, �
and � . The energy functions V and D can then be rewritten in terms of the four
generalized coordinates of the system as

V =
1
2

("

K x 1 x 1

�
x �

l
2

�
� 2

+ K x 1 y1

�
x �

l
2

�
� �

y �
l
2

�
�

+

K y1 x 1

�
y �

l
2

�
� �

x �
l
2

�
�

+ K y1 y1

�
y �

l
2

�
� 2

#

+
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"
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(9)

and

D =
1
2
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(10)

3. System equations of motion

Lagrange's equations:

d
dt

�
@T
@_qi

�
�

@T
@qi

+
@V
@qi

= Qi ; i = 1 ; 2; : : : ; n ; (11)

in which Qi = � @D
@qi

are used to derive the following set of 4 coupled, nonlinear,
second order di�erential equations of motion of the investigated system:
n

M (•x + y� •� )
o

+
n

� M
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n
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2
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2
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�
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�
2K y2 y2
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�
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x +
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�
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= 0 ;

where M = m + m� , Jd = I d + I �
d , and Jp = I p + I �

p .

4. Stability analysis

It is clear that derived governing equations of motion of the system: (12){(15)
are impossible to be solved analytically. However, linearizing the equations and
assuming similar bearings, i.e.,

K x 1 x 1 = K x 2 x 2 =
1
2

K xx ;

K y1 y1 = K y2 y2 =
1
2

K yy ;
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K x 1 y1 = K y1 x 1 =
1
2

K xy ; (16)

K x 2 y2 = K y2 x 2 =
1
2

K yx ;

will not only simplify the equations but also decouple them into the following two
sets of equations:

M •x + Cxx _x +
�
K xx � 
 2M

�
x + ( Cxy � 2
 M ) _y + K xy y = 0

M •y + Cyy _y +
�
K yy � 
 2M

�
y + ( Cyx � 2
 M ) _x + K yx x = 0 (17)

Jd
•� + l2Cxx

_� + l2K xx � +
�
l2Cxy � 
 Jp

� _� + l2K xy � = 0

Jd
•� + l2Cyy

_� + l2K yy � +
�
l2Cyx + 
 Jp

� _� + l2K yx � = 0 (18)

It is then clear that Eqs. (17) represent the translational modes of motion (i.e. cor-
responding to the translational displacementsx and y), whereas Eqs. (18) are the
system rotational modes of motion (i.e. corresponding to the rotational displace-
ments � and � ).

The assumption of a complementary solution to equations (17) and (18) of the
form x = X e�t , y = Ye�t , � = �e �t and � = �e �t leads to the following equations

�
M� 2 + Cxx � + K xx � 
 2M

�
X + ( Cxy � � 2
 M� + K xy ) Y = 0

�
M� 2 + Cyy � + K yy � 
 2M

�
Y + ( Cyx � + 2
 M� + K yx ) X = 0 ; (19)

�
Jd � 2 + l2Cxx � + l2K xx

�
� +

�
l2Cxy � � 
 Jp� + l2K xy

�
� = 0

�
Jd � 2 + l2Cyy � + l2K yy

�
� +

�
l2Cyx � + 
 Jp� + l2K yx

�
� = 0 ; (20)

The system of equations (19) and (20) can be put on the matrix form

[A] f X i g = 0 ; (21)

where [A] is the coe�cient matrix and f X i g = [ X; Y; � ; �] T .
The characteristic equation det[A] = 0 leads to the following eight's order alge-

braic equations
��

M� 2 + Cxx � + K xx � 
 2M
� �

M� 2 + Cyy � + K yy � 
 2M
�

�

[Cxy � � 2
 M� + K xy ] [Cyx � + 2
 M� + K yx ]g
��

Jd � 2 + l2Cxx � + l2K xx
� �

Jd � 2 + l2Cyy � + l2K yy
�

� (22)
�
l2Cxy � � 
 2Jp� + l2K xy

� �
l2Cyx � + 
 2Jp� + l2K yx

�	
= 0 :

It is clear that the system characteristic equation (22) can be slitted into the fol-
lowing two fourth order characteristic equations:

�
M� 2 + Cxx � + K xx � 
 2M

� �
M� 2 + Cyy � + K yy � 
 2M

�
�

[Cxy � � 2
 M� + K xy ] [Cyx � + 2
 M� + K yx ] = 0 ;
�
Jd � 2 + l2Cxx � + l2K xx

� �
Jd � 2 + l2Cyy � + l2K yy

�
� (23)

�
l2Cxy � � 
 Jp� + l2K xy

� �
l2Cyx � + 
 Jp� + l2K yx

�
= 0 :

Thus, the �rst of Eqs (23) represents the characteristic equation of the translational
modes of motion, or simply the translational characteristic equation, whereas the
secon one represents the rotational characteristic equation.
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5. Conditions of stability of system translational modes of motion

The translational characteristic equation (the �rst of Eq. (23)) can be put on the
form

4X

i =0

A i � 4� i = 0 : (24)

The Routh-Hurwitz stability array is given by
�
�
�
�
�
�
�
�

A1 A0 0 0
A3 A2 A1 A0

0 A4 A3 A2

0 0 0 A4

�
�
�
�
�
�
�
�

(25)

According to the R-H stability criterion, the necessary and su�cient conditions of
asymptotic stability are that all of the determinants � i must be positive de�nite,
i.e.,

� 1 = A1 = M (Cxx + Cyy ) > 0;

� 2 = A1A2 � A0A3 = M (Cxx + Cyy )
�
M (K yy � 
 2M ) + M (K xx � 
 2M )+

Cxx Cyy � (Cxy � 2
 M )(Cyx + 2
 M )] � M 2 �
Cxx (K yy � 
 2M ) +

Cyy (K xx � 
 2M ) � K yx (Cxy � 2
 M ) � K xy (Cyx + 2
 M )
�

> 0;

� 3 = A3f A1A2 � A0A3g � A4f A2
1g

�
Cxx (K yy � 
 2M ) + Cyy (K xx � 
 2M ) � K yx (Cxy � 2
 M )�

K xy (Cyx � 2
 M )]
��

M 2(Cxx + Cyy )(K xx + K yy � 2
 2M )+

MC xx Cyy (Cxx + Cyy ) � M (Cxy � 2
 M )(Cyx + 2
 M )(Cxx + Cyy )]

� M 2 �
Cxx (K yy � 
 2M ) + Cyy (K xx � 
 2M ) � K yx (Cxy � 2
 M )�

K xy (Cyx + 2
 M )]g �

M 2(Cxx + Cyy )2 �
(K xx � 
 2M )(K yy � 
 2M ) � K xy K yx

�
> 0;

� 4 = A4� 3 > 0;

which implies that A4 > 0, i.e.,
�
K xx � 
 2M

� �
K yy � 
 2M

�
� K xy K yx > 0: (26)

The �rst condition Eq. (26) is trivial since M , Cxx , Cyy are always positive de�-
nite. However, from the rest of the conditions one can deduce the following set of
nontrivial conditions of stability after being nondimensionalized:

�
! 2

xx


 2 � 1
�  

! 2
yy


 2 � 1

!

>
! 2

xy ! 2
yx


 4

� xx

 
! 2

yy


 2 � 1

!

+ � yy

�
! 2

xx


 2 � 1
�

>
! 2

xy


 2 (� yx + 1) +
! 2

yx


 2 (� xy � 1) (27)

�
! 2

xx


 2 � 1
�

+

 
! 2

yy


 2 � 1

!

> 4 [(� xy � 1)(� yx + 1) � � xx � yy ]

where ! 2
rs = K rs

M and � rs = C rs
2
 M in which r and s stand for x or y.
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6. E�ect of various end support parameters on system stability r egions

Based on conditions (27), the system stability boundaries are presented graphically
in terms of the various system nondimensionalized parameters as shown in Figs.5
to 10.

Figure 5 E�ect of cross-coupling sti�ness parameter � on stability regions

The �rst of conditions (28) is represented graphically in Fig. 5 which illustra tes
the system stability boundaries in terms of the dimensionless cross coupling sti�ness
parameter � = ! xy ! yx


 2 . The �gure clearly shows that the greater the magnitude of
� , the smaller the region of stability. Thus, Fig. 5 demonstrates the signi�cance of
the bearing cross-coupling sti�ness as an essential factor of system instability.

Figure 6 E�ect of principal sti�ness parameter � on stability regions
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Fig. 6 is drawn based on the �rst of conditions (28) also where the stability
boundaries are drawn here in terms of the dimensionless principal sti�ness parame-
ter � =

�
! 2

xx

 2 � 1

�
. It can be easily seen from this Figure, that the region of stability

grow with the increase in value of� . The maximum stability region is found when
� tends to in�nity (i.e., case of rigid end support) where stability region tends to b e

the entire plan above the common tangential horizontal line
! 2

yy


 2 = 1. This empha-
size the intuitive expectation that the increase of end supports principal enhances
system stability.

To study the e�ect of end support damping anisotropy on system stability re-
gions, let us consider the second of conditions (28) in case of zero cross coupling
parameters. In this case it reduces to

� xx

 
! 2

yy


 2 � 1

!

+ � yy

�
! 2

xx


 2 � 1
�

> 0: (28)

Denoting � = � yy

� xx
= Cyy

Cxx
as dimensionless anisotropic damping parameter, the

second condition can be rewritten as

! 2
yy


 2 + �
! 2

xx


 2 > 1 + � ; (29)

Figure 7 E�ect of anisotropic damping parameter � on stability regions

Thus, the stability boundaries, drawn in terms of � , may be represented by either
a family of straight lines (Fig. 7) whose equation given by

! 2
yy


 2 + �
! 2

xx


 2 = 1 + � ; (30)

or a family of ellipses (Fig. 8) whose equation is given by

! 2
xx


 2

1 + 1
�

+
! 2

yy


 2

1 + �
= 1 : (31)
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Figure 8 E�ect of � on stability regions

In Fig. 7, the region under each straight line is unstable whereas the upper
portion is stable. Like wise, the area inside each ellipse in Fig. 8 represents an
instability regions. Therefore, the stability boundaries presented in Fig. 7 and8
share the common characteristic that

(a) the minimum instability region corresponds to the isotropic damping � = 1,

(b) the instability regions grow with the increase of deviation from the isotropic
damping case� = 1, and,

(c) the large instability regions occur at the two extreme anisotropic damping
case� ! 0 and � ! 1 .

Thus, the results extracted from Fig. 3 or 4 clearly demonstrate the role played
by the anisotropy of bearing damping coe�cients as one of the sources of whirling
instability of rotor bearing systems.

Now, if the cross coupling parameters are taken into consideration, then the
second of the conditions (28) rewritten as

! 2
yy


 2 + �
! 2

xx


 2 > 1 + � +
Q

� xx
; (32)

where

Q =
! 2

xy


 2 (� yx + 1) +
! 2

yx


 2 (� xy � 1) ;

can be used to study the inuence ofQ and � xx s on the stability boundaries shown
before in Fig. 7 or 8. According to the second of conditions (28), the instability
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regions shown before in Fig. 3 are going to grow, where the points of intersection
of each stability curve with the horizontal and vertical axes should extend to the
points

�
1 + 1

� + Q
�� xx

; 0
�

and
�

0; 1 + � + Q
� xx

�
respectively as illustrated in Fig. 9.

Like wise, the instability regions in Fig. 8 should be enlarged, where the lengthof
the horizontal and vertical axis of each ellipse is going to increase to

2

r

1 +
1
�

+
Q

�� xx

and

2

r

1 + � +
Q

� xx
;

respectively. This indicates that when the bearing cross coupling a sti�ness and
damping parameters contained inQ are taken into consideration, the instability
region grow. Thus, it has been shown that the bearing cross coupling sti�ness and
damping parameters are sources of whirling instability, while the principal damping
parameters enhance system whirling stability.

Figure 9 E�ect of Q and � xx on stability regions

Lastly, the third of conditions (28) is used to investigate the e�ect of each of the
principal and the cross coupling damping parameter of the bearings (or the two end
supports in general) on the system whirling stability. In case of no cross coupling,
the condition reduces to

�
! 2

xx


 2 � 1
�

+

 
! 2

yy


 2 � 1

!

+ 4 � > 0; (33)

where � is a non dimensional principal damping parameter de�ned by� = � xx � yy .
Stability boundaries drawn in terms of � in Fig. 10 represent a family of coaxial
circles.
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Figure 10 E�ect of principal damping parameter � on stability regions

In Fig. 10, it is easy to observe that the circles with higher value of� lead to
smaller instability regions. However, if the cross coupling damping is considered,
then the family of stability boundaries in Fig. 10 is going to grow since its equation
becomes � ! xx




� 2
+

� ! yy




� 2
+ 4 � = 2 + 4  ; (34)

where  is the dimensionless cross coupling parameter (� xy � 1)(� yx +1). It is then
evident that the larger the values of  , the larger the regions of instability. Thus,
based on the third of conditions (28), it has been shown that the stability regions
grow with increasing � and decreasing . This emphasizes the results reached
before in this investigation that the two end support cross coupling parameterscan
be signi�cant sources of instability, whereas the principal parameters are sources of
enhancing stability.

7. Conditions of stability of system rotational modes of motion

It is clear that the rotational characteristic equation (the second of Eqs (23)) is anal-
ogous to the previously studied translational characteristic { the �rst of Eq s (23).
Therefore, following the same previously mentioned steps, one can reach to the
following nontrivial conditions for stability of system rotational m odes of motion.

! 2
xx ! 2

yy > ! 2
xy ! 2

yx

� 0
xx

! 02
yy


 2 + � 0
yy

! 02
xx


 2 >
! 02

xy


 2 (� 0
yx � 1) +

! 02
yx


 2 (� 0
xy + 1) (35)

� xx � yy +
! 2

xx


 2 +
! 2

yy


 2 > � xy � yx +
Jp

Jd
(� xy � � yx ) �

�
Jp

Jd

� 2

;

in which the following nondimensional quantities are de�ned:

! 2
ij


 2 = l 2 K ij


 2 J d
� ij = l 2 C ij


 J d
! 02

ij


 2 = l 2 K ij


 2 J p
� 0

ij = l 2 C ij


 J p
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where i and j stand for x or y.

8. E�ect of various end support parameters on system stability r egions

Based on conditions (35), the system stability boundaries are presented graphically
in terms of the various system nondimensionalized parameters as shown in Fig. 11
through 14.

The �rst of conditions (35) is represented graphically in Fig. 11, where the stabil-
ity boundaries are drawn in terms of the nondimensionatized cross coupling sti�ness
parameter � = ! xy ! yx


 2 . The stability curves represent a family of rectangular hy-
perbolas given by the equation

! 2
xx


 2

! 2
yy


 2 = � 2 ; (36)

with ! 2
xx


 2 = 0 and
! 2

yy


 2 = 0 as asymptotic lines. The area under each curve (the lower
region) is unstable, white the inside portion (the upper region) is stable. The �gure
clearly shows that the greater the magnitude of� , the smaller the region of stability.
The maximum stability region is obtained when � is zero where the stability region
is the entire area bounded by the two asymptotes. Therefore, Fig. 11 demonstrates
clearly the signi�cance of the bearing cross coupling sti�ness parameter� at an
essential factor of system instability.

Figure 11 E�ect of cross-coupling sti�ness parameter � on stability regions

From the �rst of conditions (36), one can also show the inuence of principal

(direct) sti�ness coe�cient on the stability regions if ! 2
xx


 2 or
! 2

yy


 2 is taken as a

parameter. Let us take ! 2
xx


 2 as a parameter denoted by� . The stability boundaries,



148 Stability Analysis of Rotor-Bearing Systems ...

Figure 12 E�ect of principal sti�ness parameter � on stability regions

drawn in terms of � , are then represented by the family of parabolas

� 2 = �
! 2

yy


 2 (37)

which is shown in Fig. 12. It can be easily seen from Fig. 12 that the region
of stability grow with the increase in variable � . The maximum stability region
is found when � tends to in�nity (rigid end support), where the stability region

tends to be the entire plan above the common tangential horizontal line
! 2

yy


 2 = 0.
This emphasize the intuitive expectation that the increase of end supports principal
sti�ness enhance the system stability.

To study the e�ect of end support damping anisotropy on the system stability
regions, let us consider the second of conditions (36) in the form

! 02
yy


 2 + �
! 02

xx


 2 >
Q02

� 02
xx

(38)

where

Q0 =
! 02

xy


 2 (� 0
yx � 1) +

! 02
yx


 2 (� 0
xy + 1) ;

and

� =
� 0

yy

� 0
xx

=
Cyy

Cxx
:

This condition is represented graphically in Fig. 13. The results presented in Fig. 13
show the inuence of Q0 and � 0

xx on the stability boundaries.
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Figure 13 E�ect of Q0, � 0
xx and anisotropic parameter � on stability regions

Lastly, the third of conditions (36) is used to investigate the e�ect of each of the
principal and the cross-coupling damping parameters of the bearings on the system
whirling stability. Let us put it in the form:

� +
! 2

xx


 2 +
! 2

yy


 2 >  (39)

where

 = � xy � yx +
Jp

Jd
(� xy � � yx ) �

�
Jp

Jd

� 2

;

and
� = � xx � yy :

Thus, the stability boundaries are drawn in terms of � in Fig. 14, it represents a
family of coaxial circles whose equations are

! 2
xx


 2 +
! 2

yy


 2 + � =  ; (40)

Fig. 14 shows that the stability regions grow with increasing� and decreasing .

9. Summary and Conclusions

The di�erential equations governing the motion of a rotor-bearing system mod-
eled as an axially symmetric appendage at the mid span of a rotating rigidshaft
mounted on two dissimilar 8-coe�cient bearings is derived using Lagrange's equa-
tions. Linearization of the governing equations of motion of the system in case
of similar bearings decouples the equation of motion of the system to two distinct
sets of equations corresponding to the translational and rotational modes of mo-
tion. The well known method of R-H stability criterion was applied on both the



150 Stability Analysis of Rotor-Bearing Systems ...

Figure 14 E�ect of principal damping parameter � on stability regions

characteristic equations of the translational and rotational modes of motion and
su�cient conditions of asymptotic stability in terms of the system nondimensio nal-
ized parameters have been obtained in each mode. The stability regions were then
represented graphically as functions of the system nondimensionalized parameters
and thorough analysis of the role played by each parameter in a�ecting the stability
of whirling motion of the system is presented.

Among the results reached in this study, the following concluding remarks can
be stated:

1. The graphs of the stability boundaries in terms of the nondimensionalized
system parameters presented in this study are typical examples of the types
of primitive design information available to engineers through the equations
provided in this investigation.

2. The anisotropy of bearing damping coe�cients is a source of whirl instability
of rotor-bearing systems where the maximum stability regions occur in the
isotropic damping case (Cxx = Cyy ), whereas the instability regions grow
with the increase of deviation from the isotropic damping case.

3. The bearing cross coupling sti�ness and damping coe�cients are serious sources
of instability of the whirl motion of rotor-bearing systems.

4. The bearing principal sti�ness and damping coe�cients enhance the whirl
stability of rotor-bearing systems.
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