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The steady laminar incompressible boundary layer mixed convection flow of an electri-
cally conducting fluid on a vertical flat plate in the presence of an applied magnetic field
has been studied. The effect of the induced magnetic field has been considered in the
analysis. The resulting partial differential equations are transformed into a system of or-
dinary differential equations which have been solved numerically using shooting method.
Two cases are considered here for the buoyancy force:

(i) when it acts in the same direction as the forced flow (T > Too),
(ii) when it acts in the opposite direction to the forced flow (T < Too).

The velocity profiles, temperature profiles, the skin friction on the plate and the rate
of heat transfer coefficient (Nusselt number) are computed and discussed for different
values of the magnetic force number 3, the thermal buoyancy force A1, reciprocal of the
magnetic Prandtl number « and viscous dissipation parameter (Eckert number) Ec for
the two cases.

Keywords: Fluid dynamics, magnetohydrodynamics, parallel channel flow, magnetic
field, Couette flow, Couette- Poiseulle, heat transfer, steady flow, unsteady flow.

1. Introduction

The study of mixed convection flow finds applications in several industrial and
technical processes such as nuclear reactors cooled during emergency shutdown,
solar central receivers exposed to winds, electronic devices cooled by fans, heat
exchangers placed in a low-velocity environment, etc.

The mixed convection flows become important when the buoyancy forces due to
the temperature difference between the wall and the free stream becomes large. The
mixed convection around heated vertical surfaces has been studied by Ramachan-
dran et al. [1], Mahmood and Merkin [2] and Merkin and Mahmood [3]. They [1-3]
have obtained similarity solutions of the governing equations. These studies deal
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with steady flows. The analogous unsteady case was recently studied by Surma
Devi, et al. [4]. Tt has been observed that in a nuclear reactor, magnetic field
affects considerably the flow and heat transfer. The steady forced convection flow
over a flat plate with a magnetic field has been studied by Glauert [5] and Na [6].
Hossain and Ahmed [7] have studied a combined effect of forced and free convec-
tion with uniform heat flux in the presence of a strong magnetic field. Hossain [8]
also studied the effect of viscous and Joule heating on the flow of an electrically
conducting and viscous incompressible fluid past a semi infinite plate of which tem-
perature varies linearly with the distance from the leading edge and in the presence
of uniform transverse magnetic field. Ibrahim [9] also studied the effect of the mag-
netic field on boundary layer equations of a non-Newtonian power law fluid when
the induced magnetic field is small. The study of unsteady laminar incompressible
mixed convection flow of an electrically conducting fluid at the stagnation point of
a two dimensional body and an axisymmetric body in the presence of an applied
magnetic field has been studied by Kumari, et al. [10], they explained the effect of
the induced magnetic field. The unsteady laminar boundary layer flow of an electri-
cally conducting fluid past a semi infinite flat plate with an aligned magnetic field
when at time t ; 0, the plate is impulsively moved with a constant velocity which
is in the same or opposite direction to that of free stream velocity has been studied
by Takhar, et al. [11]. They solved the non linear partial differential equations
numerically using finite-difference method.

The present paper is continuing of the last works. Taking into account the
effect of viscosity and Joule heating in the heat equation also we take the effect of
buoyancy force in the two cases. We will use the similarity solution and shooting
method to solve the non linear partial differential equations. There are discussions
of the results.

2. Formulation of the problem

Consider a vertical flat plate aligned parallel to a uniform free stream with velocity
U and temperature T,,. The plate is maintained at a constant temperature Ty,.
Let x-axis and y-axis are in the direction of the plate upward and the normal to it,
respectively and let the gravitational force acts in the direction opposite to the z
direction as in Figure 1. The buoyancy force then acts in the same direction as the
forced flow when T,, > T, and, in the opposite direction to the forced flow when
Ty > T

We consider the steady laminar incompressible viscous electrically conducting
fluid flow with constant properties. A magnetic field Hy is imposed parallel to
the surface (i.e. along the z-axis) outside the boundary layer. The effects of the
induced magnetic field, viscous dissipation and Joule heating have been included
in the analysis. However, the Hall effect is neglected. It is assumed that there is
no applied voltage which implies the absence of the electric field (i.e. E =0). The
electrical currents flowing in the fluid give rise to an induced magnetic field which
would exist if the fluid were an electrical insulator. Here it is assumed that the
normal component of the induced magnetic field Hy vanishes at the plate and the
parallel component H; approaches its given value Hy far from the plate [5, 10, 23].
The plate is assumed to have constant temperature T,,. Under these assumptions,
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the approximation boundary layer equations governing the steady mixed convection
flow under Boussinesq’s approximations can be expressed as [10, 11, 12, 13].
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in which u and v are the components of the velocity of the fluid in x and y direc-
tions respectively, H; and Hs are the induced magnetic field components in z and
y direction respectively, v is the kinematic viscosity, plus or minus sign in equation
(3) corresponds to a positively or negatively buoyant force, g is the acceleration
due to the gravity, Or is the coefficient of thermal expansion, T is the tempera-
ture of the fluid, p is the density of the fluid, u,, is the magnetic permeability,
K is the thermal diffusivity, C} is the specific heat at constant pressure, o is the
electrical conductivity and «; is the magnetic diffusivity or magnetic viscosity [19]

(oq = (o /,Lm)_1>.

The boundary conditions associated with equations (1)—(5) are
u=v=0, T=T, Hy=0 at y=0, (6)

u=U, T=Ts, Hi=Hy as y— Yoo- (7)

The continuity equations (1) and (2) can be satisfied by using a stream functions
¥1(x,y) and ¥o(x,y) such that

_d 9% _ O _ I
u = ay, v 8x7 Hl_ 8y7 HQ_ o . (8)

To transform equations (3)—(5) into a set of ordinary differential equations, we
use the transformations: [10]

AV 1
R O RICZOOF o)
o ()7 o), 0 = 7=

where 7 is dimensionless distance from the plate, f(n) and ¢(n) are dimensionless

stream function of velocity and magnetic field respectively and @ is the dimensionless
temperature. By using equations (8) and (9), equations (3)—(7) transform to:

P S5 300" M =0 (10)
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1
0" + 5P f0' £Pr Ec (f +aB¢") =0 (11)
1
noo- ) =0 12
o'+ 5 (19— 1'8) =0, (12)
with boundary conditions:
at: =0, f(0)=f(0)=0, 0(0)=1, ¢(0)=0 (13a)
as: N> Mooy f(Me) =1, 0(00c) =0, ¢ (1) =1 (14a—c)
where § = £ ;"'Ulgg is the magnetic force number which is the square of the ratio of
the Alfven wave velocity [20]:
H2\* B
UA:(Nm ) _ . B=pnH
P (1tmp)®
to free stream velocity;
Gr(z
O
[Re(x)]>

is the ratio of Grashof number

_ 9Br (Tw - Too) z3

Gr e
to the square of Reynolds number
zU
Re(x) = 7

and it is represented as the thermal buoyancy force. We notice that A; is a dimen-
sionless quantity but it is a function of . In the similarity solution we can give A\
any value and in this case Gr(z) and Re(z) are called local Grashof number and

local Reynolds number [1, 24, 25]. Pr = £ is Prandtl number; Ec = is

U2
Cp(Tw—Tx)
Eckert number (viscous dissipation parameter) and o = 5% = % = (0 pimr) "
is the reciprocal of the magnetic Prandtl number Pr,,, which is the ratio of the
kinematic viscosity to the magnetic diffusivity. Thus one can define the magnetic

Prandtl number as Pr,, = é = %, where R, is magnetic Reynolds number [21,

Chapter 10]: R, = g—f and Re is Reynolds number. Plus or minus in equations
(10) and (11) are according to the direction of the buoyancy force with the direction
of the forced flow or in opposite to it respectevily. The prime denotes derivative
with respect to 7.

3. Numerical solution

The nonlinear ordinary differential equations (10), (11) and (12) with the boundary
conditions (13) and (14) have been solved by the fourth-order Runge Kutta integra-
tion scheme along with the Nachtshem- Swigert shooting technique [14] with error
of order 10~%. The procedure is to estimate the unknown values of f”(0), #’(0) and

¢'(0).
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In order to verify the accuracy of our present method, we have compared our
results with those of Pop et al. [15] in their special case for the viscosity is constant
i.e. u= constant, and, if we have § = A = Ec = 0, our equations and their
equations will reduce to

s =0, (13

0" + %Prf 0 =0. (14)

If the boundary conditions are at n = 0: f(0) = 0, f'(0) = 0 and 6(0) = 1; as
n — oo: f(00) =1, 6(c0) = 0. Our results were f”(0) = —0.4445887 and 0'(0) =
—0.3542833, but in Pop, et al. [15] f(0) = —0.4445517 and ¢'(0) = —0.3507366.
Therefore our results are in very good agreement with [15]. In the special case,
when 8 = A\; = 0, equation (10) together with the boundary conditions (13a, b)
and equation (14a) reduces to the well known Blasius equation [ + % fr=0o.
Our result for this special case was f”(0) = 0.3320654, which agrees very well with
Schlichting [16].

4. Results and discussion

4.1. Thermal buoyancy force A1 in the same direction of the forced flow
Tw > T

Figure 1 Graph of f’ vs n for various values of \1

In the computation performed, we can find important results. From Figure 1,
it can be seen that:

(i) In the interval (0 < n = 3.2), the dimensionless longitudinal velocity f’ in-
creases as the thermal buoyancy force \jincreases.

(ii) In the middle of this interval, the velocity f’ has values more than one (the
outer flow velocity). This overshoot is due to the effect of the buoyancy force
A1 on the velocity.
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Figure 2 Graph of f’ vs n for various values of A\; and Ec

1.2

0.8

-0.0

pog v een gl revna el gaiaal

0.4 e T e T T

O

n

Figure 3 Graph of 0 vs n for various values of A1 and Ec

(iii) After this interval i.e. far from the plate the effect of the buoyancy force A\;
is very weak.

From Figure 2, it is noticed that Eckert number (Ec) also increases this overshoot
of the velocity, so the velocity f’ increases as Eckert number Ec (viscous dissipation
parameter) increases.

Figure 3 illustrates that there is an overshoot in the temperature near the plate
for values A\; > 4. That is near the plate, the temperature 6 increases as the
buoyancy force \; increases. This result agrees with Kumari, et. al. [10] and
Ibrahim and Terbeche [22] for their case of non-Newtonian fluid (when n is kept
constant). Also from this figure, we notice that at Eckert number Ec = 0 there is
no overshoot in the temperature but when Ec = 0.2 the overshoot appears which
prove that the cause of this overshoot is due to the existence of Eckert number i.e.
the last two terms in equation (4) which are the viscosity term and Joule heating.
Important result is also noticed from this figure that the temperature 6 increases
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Figure 5 Graph of f’ vs n for various values of «

as the buoyancy force A; increases for Ec > 0 but the temperature 6 decreases as
the buoyancy force A\ increases for Ec = 0 (there is no viscous dissipation).

From Figure 4, it is observed that near the plate (for n < 1) the value of
the velocity f’ approximately does not depend on the value of the magnetic field
parameter 5. But after this interval (for n > 1), the dimensionless velocity f’
increases as the magnetic field parameter ( increases.

Figure 5 represents the effect of the reciprocal of the magnetic Prandtl number
(«) on the velocity. We found that as a increases the velocity f’ decreases. That
is the magnetic Prandtl number has direct effect on the velocity f/ . Numerical
calculations are carried out for the effects of the magnetic field parameter Sand the
reciprocal of the magnetic Prandtl number (a) on the temperature 6, it is found
that they have very small effects.
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Figure 6 Graph of f’ vs n for various values of A\;

4.2. Thermal buoyancy force in the opposite direction of the forced flow
(Tw < Too)

In this case, our equations will take the form: [18]

P S 506" X0 =0 (15)
0" + %Pr f0' —Pr Ec (" +aB¢”) =0 (16)
o'+ o (£~ 1'9) =0, a7)
with the boundary conditions (13) and (14). The transformation (in this case)
9:%, Tw < Too (18)

illustrates that the dimensionless temperature 6 decreases as the temperature T
increases. Numerical calculations are carried out for this case as before in the case
(Tw < Teo). From Figure 6 it can be seen that

(i) the dimensionless longitudinal velocity f’ near the plate has negative value
in the interval 0 < 1 < 1 due to the effect of the opposite direction of the
buoyancy force parameter\;. Also this negative value according to the effect
of the normal component of the induced magnetic field Hs:

Hy= 20\ [ 06 ) — o)

In this interval Hs takes negative value.

(ii) Intheinterval 0 < n < 3.2, the velocity f increases as the buoyancy parameter
A1 increases.
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Figure 7 Graph of 6 vs n for various values of A1
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Figure 8 Graph of f/ vs n for various values of 3

(iii) Far from the plate (3.2 < 7 < 1) the dominant force is due to the value of
the induced magnetic field component H;. Consequently an inverse effect for
A1 on f is noticed.

(iv) Tt is observed also that in the middle zone of the velocity boundary layer
(2 < 1 < M), the velocity f’ increases and has value more than one (the
outer flow velocity). This overshoot is due to the effect of the buoyancy
parameter A\; and Eckert number Ec.

Figure 7 represents the effect of the parameter A\; on the temperature 6. It is
noticed that the temperature 6 decreases as A\ increases in the interval 0 < n < 2
but an inverse behavior after this interval is noticed. Figures 8, 9 and 10 illustrate
the effects of the magnetic field parameter (3, the reciprocal of the magnetic Prandtl
number a and Eckert number Ec on the velocity respectively. They have the same
behavior on the velocity as the buoyancy parameter ;.
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Figure 10 Graph of f’ vs n for various values of Ec

Figure 8 illustrates that the magnitude of the velocity f’ increases very small as
the magnetic field parameter 3 increases in the interval 0 < n = 3, but an inverse
behavior after this interval is noticed.

Figure 9 illustrates that the dimensionless velocity f’increases as the reciprocal
of the magnetic Prandtl number « increases.

Also from Figure 10, it is noticed that the velocity f’ increases as Eckert number
Ec increases in the interval 0 < n < 2.4, but after this interval f’ decreases as Eckert
number Ec increases.

From Figure 11 it is noticed that increasing of Ec causes decreasing of the
temperature 6 until = 2 (this result is different from the result in the case (T, <
Tw)). For n > 2 the temperature 6 increases as Ec increases. The effects of the
magnetic field parameter § and the reciprocal of the magnetic Prandtl number «
on the temperature 6 are calculated numerically and found that their effects are
very small.
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1.5

Figure 11 Graph of 6 vs n for various values of Ec

The physical quantities of interest in this problem are the skin friction coefficient
£(0), the dimensionless coefficient of heat transfer —6’(0) i.e. the Nusselt number
and the displacement thickness (the boundary layer thickness) §; which are defined
respectively as: ([15, 22])

2Tw
= Pk Tw = p (Ou/0y0),_ (19)
Nuy=——2dw — k(3T /dy) (20)
u = k(Tw_TOO)a Qw* yy:()
Yoo Noo
_ _v - _f
5= [(1-g) = [a-r)ay (21)
0 0
Using (8) and (9), quantities (26) and (27) can be expressed as
Cy =2(Re)"2f"(0), Nu=—(Re)26(0), (22)

From Table (1) f”(0), ¢’(0) and ¢'(0) are listed for Prandtl number Pr = 0.7 and
several sets of values of 3, A1, @ and Ec. It is seen that for increasing the magnetic
force parameter (3, all of the skin friction coefficient:

70) = [®Re) /2]
heat transfer coefficient in term of Nusselt number:
0'(0) = {—(Re)_%Nu]

and the induced magnetic field ¢'(0) increase. These results agree with Kumari, et
al. [10]. Also the effects of the buoyancy force parameter A; and Eckert number
Ec on f”(0), #’(0) and ¢'(0) are the same as the magnetic force parameter g,
ie. f”(0), 0'(0) and ¢'(0) increase as the buoyancy parameter A\; increases also
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5 [n Ja  [Be [0 00 7(0)

0 7 6 0.2 6.59578 0.97839 1.58533
0.2 7 6 0.2 6.62086 0.98768 1.60411
0.4 7 6 0.2 6.63612 0.99088 1.61463
0.6 7 6 0.2 6.64502 0.99335 1.62865
0.5 1 6 0.2 1.41021 -0.28571 0.89167
0.5 3 6 0.2 3.03018 -0.10649 1.12282
0.5 5 6 0.2 4.68836 0.28617 1.35001
0.5 7 6 0.2 6.64233 0.99166 1.61973
0.5 7 4 0.2 6.80785 1.07912 1.79468
0.5 7 5 0.2 6.71417 1.02904 1.70013
0.5 7 6 0.2 6.64423 0.99282 1.62162
0.5 7 7 0.2 6.59297 0.96721 1.56469
0.5 7 6 0 5.19609 -0.59447 1.35373
0.5 7 6 0.1 5.72216 -0.02262 1.45275
0.5 7 6 0.2 6.64302 0.99208 1.62033

Table 1 Values of the skin friction f’/(0), the local Nusselt number 6’(0) and the induced magnetic
field ¢/(0) with Pr = 0.7 for the case Ty > Too

as Eckert number Ec increases. But an inverse behavior of the reciprocal of the
magnetic Prandt]l number a on them. That is f”(0), 8’(0) and ¢'(0) decrease as «
increases.

From Table (2) which represents the second case for cooling plate (T, < Two)-
we can notice that the skin friction f”(0), the local Nusselt number 6'(0) and the
induced magnetic field ¢'(0) increase as the magnetic field parameter 5 and the
reciprocal of the magnetic Prandtl number « increase as in the first case. But
an inverse behavior for the buoyancy parameter A;. It is noticed that only ¢’(0)
increases but f”(0) and 6'(0) decrease as the buoyancy parameter A; increases.
Finally f”(0) and ¢'(0) increase as Eckert number Ec (viscous dissipation parame-
ter) increases, but 6’(0) decreases as Eckert number (viscous dissipation parameter)
increases.

5. Conclusions

The effect of buoyancy-induced streamwise pressure gradients on laminar forced
convective flow and heat transfer over a vertical flat plate are studied analytically
by the local similarity method of solution in tow cases for the buoyancy force:

(i) when it acts in the same direction as the forced flow (T, > Too),
(ii) when it acts in the opposite direction to the forced flow (T, < Tw).
We found that:

1. In the first case: Ty, > T, i.e. for heating plate, the longitudinal dimension-
less longitudinal velocity f’ and the temperature 6 of the fluid are increasing
as the buoyancy parameter A; and the the magnetic field parameter § in-
crease. But they — f/ and 6 decrease as the reciprocal of the magnetic Prandtl
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B M o | Ec | f"(0) 0'(0) ¢'(0)

0.3 5 6 0.7 -2.02626 | -1.04905 | 0.61019
0.4 5 6 0.7 -2.01089 | -1.04676 | 0.61641
0.5 5 6 0.7 -1.99778 | -1.04465 | 0.62099
0.6 ) 6 0.7 -1.98709 | -1.04368 | 0.62830
0.5 4 6 0.7 -1.87022 | -0.94976 | 0.56822
0.5 4.5 6 0.7 -1.94942 | -1.00083 | 0.59416
0.5 ) 6 0.7 -1.99778 | -1.04465 | 0.62099
0.5 5.5 6 0.7 -2.04826 | -1.08894 | 0.64819
0.5 5 5 0.7 -2.01649 | -1.04831 | 0.58736
0.5 5 7 0.7 -1.99606 | -1.04463 | 0.65274
0.5 ) 8 0.7 -1.96974 | -1.04033 | 0.68022
0.5 5 9 0.7 -1.94704 | -1.03688 | 0.70425
0.5 5 6 0.6 -2.21526 | -1.03046 | 0.58339
0.5 5 6 0.65 | -2.21526 | -1.03816 | 0.60497
0.5 ) 6 0.7 -1.98554 | -1.04384 | 0.62423
0.5 5 6 0.8 -1.80303 | -1.06216 | 0.70425

Table 2 Values of the skin friction f’/(0), the local Nusselt number 6’ (0) and the induced magnetic
field ¢/(0) with Pr = 0.7 for cooling plate (T < Two)

number « increases. In the second case: Ty, < T, i.e. for cooling the plate,
the longitudinal dimensionless longitudinal velocity f’ and the temperature 6
of the fluid decrease as the buoyancy parameter A\; increases (near the plate).

. In the two cases, near the plate (n < 1), the effect of the magnetic field is very

weak on the velocity f’. That is f’ does not depend on the magnetic field
near the plate, but far from the plate (n > 1), f’ increases as the magnetic
field parameter 3 increases.

. For heating plate (T3, > T ); the skin friction coefficient f”(0), heat transfer

coefficient 6'(0) and the induced magnetic field ¢'(0) increase as the magnetic
force parameter 0 and the buoyancy parameter A, increase. But for cooling
plate (T, < Two), it is noticed that only the induced magnetic field ¢'(0) in-
creases as the buoyancy parameter \jincreases but the skin friction coefficient
f"(0) and heat transfer coefficient 6’(0) decrease as buoyancy parameter \;
increases.
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