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Al. Politechniki 6, 90–924 ÃLódź, POLAND
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This article is devoted to the mathematical formulation and computational implementa-
tion of the Stochastic Finite Volume Method for 1 and 2D fluid and heat flow problems.
It is based on the stochastic generalized perturbation technique, which allows for a deter-
mination of the probabilistic moments of the state variables or functions for the general
stationary transport equations with random parameters. Both numerical case studies
contain a comparison of the stochastic perturbation approach of different orders, their
relations to the Monte–Carlo simulation results as well as the effect of the perturbation
parameter and input coefficient of variation on the output state functions.
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1. Introduction

The flow (or transport) problems with random physical coefficients and/or geomet-
rical parameters appear frequently in the engineering practice. From a probabilistic
point of view they can be solved using the Monte–Carlo simulation technique as
well as the stochastic methods based on the Karhunen-Loeve or polynomial expan-
sions [5, 10] or the Taylor expansion perturbation technique [6, 7, 8]. On the other
hand, whether a spatial discretization of the transport equations in solids seems
to be more natural using the Finite Element Method (FEM), then a the fluid or
aero-mechanics applications need rather volumes–based than the specific points of
continuum discretization. Therefore, the Finite Volume Method (FVM) [1, 3, 4]
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seems to be more appropriate in the last two case studies.
That is why this elaboration is entirely devoted to probabilistic formulation

of the FVM approach using the generalized perturbation technique. This gener-
alization is expressed by an inclusion in the model equations both perturbation
parameter ε as well as the probabilistic moments of the random input of practically
any available order. Therefore, any order probabilistic moments of the stochastic
output can be computed and although the Gaussian random variables are ana-
lyzed here, then any type of the probability density function may be effectively
taken instead of it. The details of computational implementation of the stochastic
perturbation–based approach into the classical FVM are given here independently
for the unidirectional (diffusion–advection) and planar (heat conduction) problems.
The numerical routines built up allows to compute any probabilistic moments and
the coefficients for the state functions analyzed by (a) straightforward differentiation
of an increasing order equations systems within the perturbation scheme and (b)
the use of the so–called response function method. Alternatively, we may determine
the same by the classical Monte–Carlo simulation technique embedded symbolically
into the MAPLE flow solvers here. All the numerical results provided here show
efficiently that neglecting a choice between the methods (a) and (b), the SFVM
gives the results (for higher order realizations) almost the same as the statistical
estimation obtained thanks to the Monte–Carlo analysis.

Although a computational implementation is completed here using the symbolic
language of the system MAPLE, further programming of the general purpose SFVM
program seems to be the relatively easy task, which can give a plenty of new inter-
esting and reliable results. So that, the new problems like 1D, 3D and even planar
using the other grids (both structured and unstructured) for uncoupled and coupled
physical phenomena with random coefficients should be studied using the presented
technique. The very important reason to develop this method is a discretization
of the input random fields by the SFVM, which seems to be easier than in the
case of the Stochastic Finite and Boundary Element Methods. Since the center
of each sub–volume is equivalent to its degree–of–freedom location, this particu-
lar point is further considered to compute the cross–correlation matrices for higher
order moments and random fields analysis. An analogous process is much more
complex for both SFEM, because usually the mid–point discretization is employed
for the random fields in 2 and 3D problems. Those points are however not equiv-
alent to the degrees of freedom locations, so that quite separate computations are
needed to determine the probabilistic moments. Local high gradients of the cross–
correlations may essentially affect the error of the correlations determination for the
state functions in the SFEM, whereas the SFVM is free from this effect since spatial
and random fields discretizations are done on the same subsets of computational
domain.

2. The Finite Volume Method

As it is known, the Finite Volume Method (FVM) is one of the available computer
methods for evaluation of the partial differential equations as a system of the alge-
braic equations. A very useful property of the FVM is that the balance principles,
which are the basis for the mathematical modeling of continuum mechanical prob-
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lems, per definition, are also fulfilled for the discrete equations. A starting point
for the FVM is a decomposition of the problem domain into the control volumes
(CVs), where each CV is represented by its midpoint only. This is the main dif-
ference to the Finite Element Method (FEM), where the equilibrium equations are
formed and solved in the nodal points of the mesh only, which are located on the
corners (and midpoints for higher order approximants) of each finite element. Let
us note that, quite similarly to the FEM, there are (a) regular and irregular point of
the grid, quite similar to those applied in the Finite Difference Methods, (b) trian-
gular, quadrilateral as well as the polygonal grids, both structured and unstructured
in plane FVM discretizations as well as (c) some volumetric divisions using cubes,
for instance, where the gravity center of such a cube may be treated as the point of
the FVM grid.
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Figure 1 Cell – centered FVM

2.1. 1D example for the convection–diffusion equation

Let us consider the one dimension flow described by transport equation with bound-
ary value:

ν
∂u

∂x
− d

∂2u

∂x2
= 0 in (0, 1)

u (0) = 0 (1)
u(1) = 1

ν is constant flow velocity (in a subsonic flow regime), u is a displacement of the
fluid in the horizontal direction and d stands for the diffusion coefficient, which is
the physical parameter; let us note that ν > 0. We provide a discretization by
division of the computational domain V onto the non-overlapping control volumes
Vi, i=1,. . . ,n.

V =
n∑

i=1

Vi i, n ∈ N, V ∈ R (2)
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Next, it is necessary to discretize eqn (1) using chosen type of approximation
(UDS – upwind difference scheme, CDS – central difference scheme or one of most
advanced – LUDS – linear upwind difference scheme and QUICK – quadratic upwind
difference scheme) by using only local information for all control volumes. Obvi-
ously, the FVM method is universal and can be used for different state variables
(i.e. u, v, T), while the UDS approximation of the convective fluxes is represented
by the following formula:

Ic ≈ ν
ui − ui−1

∆x
, for ν > 0 ui− 1

2
≈ ui−1, ui+ 1

2
≈ ui, i = 1, . . ., n (3)
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Figure 2 1D upwind difference approximation (UDS)

The diffusive fluxes are approximated here in the same way. There holds
(

∂u

∂x

)

i− 1
2

≈ ui − ui−1

∆x
,

(
∂u

∂x

)

i+ 1
2

≈ ui+1 − ui

∆x
(4)

and the second–order accurate central difference is given by

Id ≈ −d
ui−1 − 2ui + ui+1

(∆x)2
(5)

The upwind difference scheme gives the linear system of equations, which can
be finally written as

Pe
ui − ui−1

∆x
− ui−1 − 2ui + ui+1

(∆x)2
= 0 i = 1, ..., N − 1 (6)

where Pe = ν
d is the Peclet number. Therefore, a matrix formulation for the

FVM can be rewritten using the constant coefficients a, b and c as follows

A =
1

(∆x)2




b c
a b c

a b c
. . .

a b




u =




u1

u2

u3

.
uN−1




F =




0
0
0
.
− c

(∆x)2




(7)
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where
a = −1− Pe∆x, b = 2 + Pe∆x, c = −1

So that the discretization is uniform here (but it needn’t be) and ∆x naturally
affects the final solution quality.

2.2. Plane heat conduction problem by the FVM

The introduced control volume refers, in our case, to a small plate (the specific ex-
ample included here contains the quadrilateral CV with a cell–oriented arrangement
of nodes Fig. 1) surrounding each node point on a mesh.

Figure 3 Cell-oriented control volumes

The next step is a formulation of the integral balance equation within each con-
trol volume and approximation of the surface and volume integrals by the relevant
numerical integration. Last step is formulation and solving algebraic system of equa-
tions with the concrete boundary conditions. We consider here the heat conduction
in a trapezoidal plate described by the heat conduction equation with the homoge-
neous boundary conditions as indicated in Fig. 3 [7, 9]

−k

(
∂2T

∂x2
+

∂2T

∂y2

)
= ρq

T = T̂ , x ∈ ∂ΩT (8)
q = q̂, x ∈ ∂Ωq

Let us consider statistically homogeneous region with constant material density ,
heat conductivity (random quantity) as well as the constant heat source applied all
onto the plate. An integration of eqn (8) over a control volume V according to the
Gauss integral theorem and assuming that the surface integral may be splitted into
a sum of the four surface integrals over the cell faces Sc of the CV gives [9]

−k
∑

c

∫

Sc

(
∂T

∂x
nx +

∂T

∂y
ny

)
dSc =

∫

V

ρqdV = ρ
∑

c

Fc (9)

where a summation is carried out over c = e, w, n, s according to the so–called
compass notation, which is useful for quadrilateral control volume.
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Figure 4 The quadrangular control volume with so-called compass notations in the Cartesian
grids

Generally, the balance equations describing the stationary transport problem has
the form:

∂

∂xi

(
ρviφ− α

∂φ

∂xi

)
= f (10)

where α is the scalar field coefficient equivalent to the heat conductivity in steady–
state heat transfer.

By integration of (10) over an arbitrary control volume V and application of the
Gauss integral theorem our equation has form:

∫

S

(
ρviφ− α

∂φ

∂xi

)
nidS =

∫

V

fdV (11)

The surface integral in (11) can be changed into the sum according to the formula:
∑

c

∫

Sc

(
ρviφ− α

∂φ

∂xi

)
ncidSc =

∫

V

fdV , where c = 1, ..., k (12)

were c represents all surfaces over the cell faces of the CV’s.
Using the midpoint rule for the surface integrals and distinguishing between the

convective and diffusive part of equations (splitting of the convective and diffusive
fluxes),

F convective
c =

∫

Sc

ρviφncidSc and F diffusive
c = −

∫

Sc

(
α

∂φ

∂xi

)
ncidSc (13)

Considering homogenous medium it is easy to see, that:
∫

Sc

ρviφncidSc = ρ

n∑

i=1

viφncid (∂Ω) (14)
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Figure 5 Control volume with general notations in the Cartesian grids

where n denotes the total number of control volumes and

−
∫

Sc

(
α

∂φ

∂xi

)
ncidSc = α

m∑

i=1

nci

(
∂φ

∂xi

)

c

d (∂Ω) (15)

where m denotes the total number of separate lines constituting the considued con-
trol polygonal. Returning to the compass notation we obtain the approximations:

∑
c

ρvinciδScφc −
∑

c

αnciδSc

(
∂φ

∂xi

)

c

= fP δV (16)

convective part of equation diffusive part of equation

Where:

ne =
(yne − yse)

δSe
e1 − (xne − xse)

δSe
e2 (17)

and
δSe =

√
(xne − xse)2 + (yne − yse)2 (18)

Approximation of the volume integral in the CV are represented by average value
over the CV according to two–dimensional midpoint rule:

∫

V

ρiqidV =
∫

V

fidV ≈ fP δV (19)

where δV denotes the volume of the CV and fi denotes the value of the function f .

δV =
1
2
|(xse − xnw)(yne − ysw)− (xne − xsw)(yse − ynw)| (20)
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Difference formulas can by simply approximate by using central differencing formula.

(
∂φ

∂x

)

e

≈ φE − φP

xE − xP
(21)

Where φ is a linear function between the points xP and xE .
For the velocity components v1, v2 > 0 and using the UDS method for the

convective flux, and the CDS method for diffusive flux the balance equation (16)
for the P’th node can be written:

(
ρv1φP − α

φE − φP

xE − xP

)
(yn − ys)−

(
ρv1φW − α

φP − φW

xP − xW

)
(yn − ys)

+
(

ρv2φP − α
φN − φP

yN − yP

)
(xe − xw)−

(
ρv2φS − α

φP − φS

yP − yS

)
(xe − xw)

= fP (yn − ys) (xe − xw) (22)

Small reorganizations gives as an algebraic equation:

aP φP = aEφE + aW φW + aNφN + aSφS + fP (23)

with coefficients:

aP =
ρv1

xe − xw
+

α (xE − xW )
(xP − xW ) (xE − xP ) (xe − xw)

+
ρv2

yn − ys

+
α (yN − yS)

(yP − yS) (yN − yP ) (yn − ys)

aE =
α

(xE − xP ) (xe − xw)
(24)

aW =
ρv1

xe − xw
+

α

(xP − xW ) (xe − xw)

aN =
α

(yN − yP ) (yn − ys)
aS =

ρv2

yn − ys
+

α

(yP − yS) (yn − ys)

which generally can by written as:

aP φP −
∑

c

acφc = fP (25)

In particular 2D case described by the equation (9), algebraic equations in the
context of temperatures are given as follows:

k
[i,j]
P T

[i,j]
P − k

[i,j]
E T

[i,j]
E − k

[i,j]
W T

[i,j]
W − k

[i,j]
S T

[i,j]
S − k

[i,j]
N T

[i,j]
N = f

[i,j]
P (26)

where i = 1, ..., M, j = 1, ..., N .
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Figure 6 Arrangement of CV’s and nodes for 2D transport problem

Finally, the system matrix has the form:

K =




k
[1,1]
P −k

[1,1]
N . 0 . .

−k
[1,1]
E . . .

. . . . .
0 . . . .

. . . . −k
[N−1,M ]
E

−k
[2,1]
W . . . .

. . . . 0
. . . . .

. . . −k
[N,M−1]
N

−k
[N,M ]
W . 0 . −k

[N,M ]
S k

[N,M ]
P




T =




T
[1]
P

T
[2]
P

.

.

.

.

.

.

.

T
[N ]
P




F =




f
[1]
P

f
[2]
P

.

.

.

.

.

.

.

f
[N ]
P




K ·T = -ρ · F (27)

Further, we consider a matrix formulation of Eq. (9) and there holds as

Kαβ · Tα = -ρFα α, β = 1, . . ., N (28)
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where Tα is the vector of unknown temperatures – the solution vector, Kαβ is the
matrix of the heat conductivity, Fα is the vector of applied heat fluxes and α, β
indexing all available degrees of freedom within the control volumes; N denotes here
the number of the control volumes introduced in the computational domain.

A contradiction of 1 and 2D FVM discretizations shows that the unidirectional
one is closer to the Finite Difference Method like division of a computational domain
(because of its difference form), whereas 2D (as well as 3D not shown here) is closer
to the Finite Element Method discretization because the weak form of the problem
is subdivided into the control volumes.

3. The Perturbation – based Stochastic Finite Volume Method

Let us denote the corresponding random vector of the problem by , with probability
density functions p(b). Therefore, the mth order central probabilistic moment is
given by

µm(b) =

+∞∫

−∞
(b− E[b])m p(b)db (29)

The basic idea of the stochastic perturbation approach follows the classical pertur-
bation expansion idea and is based on approximation of all input variables and the
state functions of the problem via the truncated Taylor series about their spatial
expectations in terms of a parameter ε >0. For example, in the case of the heat
conductivity k, the nth order truncated expressions are written as

k = k0 + εk,b∆b +
1
2
ε2k,bb∆b∆b + ... +

1
n!

εnk(n) (∆b)n (30)

where
ε∆b = ε

(
b− b0

)
(31)

is the first variation of b about its expected value b0 and, similarly

ε2∆b∆b = ε2
(
b− b0

) (
b− b0

)
(32)

is the second variation of b about b0; the nth order variation can be expressed
analogously as

εn (∆b)n = εn
(
b− b0

)n
(33)

The symbol (.)0 represents the value of the function (.) taken at the expectations b0,
while (.),b, (.),bb and denote the first, the second and nth order partial derivatives.
The fluid velocity may be expanded as

νi = ν0
i + εν,b

i ∆b +
1
2
ε2ν,bb

i ∆b∆b + ... +
1
n!

εnν
(n)
i (∆b)n (34)

Traditionally, the stochastic perturbation approach to all the physical problems
is entered by the respective perturbed equations of the 0th, 1st and successively
higher orders being a modification of the relevant variational integral formulation.
It is well known from the SFEM formulations that the system of linear algebraic
equations, which is the basis of the model, i.e.

Kαβ(b)Tβ(b) = Qα(b), α, β = 1, . . ., N (35)
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where is the heat conductivity matrix, denotes the discrete temperatures vector in
the system, while is the heat flux, may be transformed into the following systems
of equations: 




K0
αβT 0

β = Q0
α

K0
αβT ,b

β = Q,b
α −K ,b

αβT 0
β

(...)
n∑

k=0

(
n
k

)
K

(k)
αβ T

(n−k)
β = Q

(n)
α

(36)

In order to calculate the expected values and higher order probabilistic moments
of displacements, strains and stresses functions, the same Taylor expansion is em-
ployed to the definitions of probabilistic moments calculated for any state random
variables assuming their continuous character. Therefore, the most important first
two probabilistic moments of these functions are derived from the definition; it is
explained below for the temperature history T (b; t). The expectation equals to

E [T (t, b) ; b] =

+∞∫

−∞
T (t) p(b)db

(37)

=

+∞∫

−∞

(
T 0 + εT ,b∆b +

1
2
ε2T ,bb∆b∆b + ... +

1
n!

εnT ,n (∆b)n

)
p(b)db

so that, the 6th order expansion reduces to

E [T (t, b) ; b] ∼= 1× T 0(t, b) +
1
2
× T ,bb(t, b)× V ar (b)

+
1
4!
× T ,bbbb(t, b)× µ4 (b) +

1
6!
× T ,bbbbbb(t, b)× µ6 (b) (38)

= T 0(t, b) +
1
2
T (2)(t, b) +

1
4!

T (4)(t, b) +
1
6!

T (6)(t, b)

where the odd order terms are equal to zero for the Gaussian random deviates. In
the case of a single Gaussian input random variable b, the generalized expansion
simplifies of course to

E [T (t, b) ; b, ε, m] = T 0(t, b) +
1
2
ε2 ∂2T

∂b2
µ2(b)

+
1
4!

ε4 ∂4T

∂b4
µ4(b) +

1
6!

ε6 ∂6T

∂b6
µ6(b) (39)

+... +
1

(2m)!
ε2m ∂2mT

∂b2m
µ2m(b)

with µ2m being the central 2mth probabilistic moment. Considering that for a
standard deviations denoted by σ

µ2k+1(b) = 0 µ2k(b) = 1× 3× ...× (2k − 1)σ2k(b) for any k ≤ m (40)
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one may demonstrate that

µ2(b) = σ2(b) = V ar(b)
µ4(b) = 3σ4(b) = 3V ar2(b) (41)
µ6(b) = 15σ6(b) = 15V ar3(b)

Using this extension of the random output, a desired efficiency of the expected
values can be achieved by the appropriate choice of m and ε corresponding to the
input probability density function (PDF) type, probabilistic moment interrelations,
acceptable error of the computations, etc.; this choice can be made by compara-
tive studies with Monte–Carlo simulations or theoretical results obtained by direct
symbolic integration.

Quite a similar treatment to that from above leads to the following result for
the variance of any state function; there holds

V ar (T ) =
(
T ,b

)2 × µ2(b) +
(

1
4

(
T ,bb

)2
+

2
3!

T ,bT ,bbb

)
× µ4(b)

+

((
1
3!

)2 (
T ,bbb

)2
+

1
4!

T ,bbbbT ,bb +
2
5!

T ,bbbbbT ,b

)
× µ6(b) (42)

Consequently, mth order probabilistic moment for the structural response function
in the 10th order stochastic Taylor expansion is introduced as

µm(T (b)) =

+∞∫

−∞

(
n∑

i=1

εi

i!
∆bi ∂

iT

∂bi
− E[T (b)]

)m

p(b)db

=

+∞∫

−∞

(
T 0(b) + T ,bε∆b + T ,bbε2 (∆b)2

2!
...

∂nT (b)
∂bn

εn (∆b)n

n!
− E[T (b)]

)m

p(b)db

∼=
+∞∫

−∞

(
T ,bε∆b + T ,bbε2 (∆b)2

2!
...

∂10T (b)
∂b10

ε10 (∆b)10

10!

)m

p(b)db (43)

It is necessary to point out that this methodology is valid for a single random vari-
able with any probability density function; further simplifications may be obtained
by a specification of this PDF. This methodology will be essentially changed in the
case of random field as well as of two and more correlated random variables.

Now, the remaining numerical issue is a determination of the partial derivatives
(and their stability) of the state functions with respect to the random input vari-
able. The straightforward manner following eqns. (36), where k + 1st derivative is
deduced from kth order equation is not the only one. Let us introduce the nth order
polynomial representation of the state function T with respect to random input
parameter b as

T (b) = anbn−1 + an−1b
n−2 + ... + a0 where an, ..., a0 ∈ < (44)

Computational determination of those coefficients needs a formation and a solution
of linear system of equations of the nth order, which would be a result of the
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repeated deterministic solution (35) within the new domain [b−∆b, b + ∆b], where
the interval 2∆b is uniformly divided into n − 1 equidistant sub–domains. If the
entire initial domain is statistically homogeneous with respect to the parameter b,
then this extra system must be solved only once and the polynomial approximation
(44) has a global character. Then, we solve numerically

Kαβ(bi)T
(i)
β (bi) = Qα(bi), i = 1, . . ., n, α, β = 1, . . .N (45)

with respect to T
(i)
β (bi) and then the coefficientsai are found as β-independent.

The unique solution for this system makes it possible calculation of up to nth order
ordinary derivatives of the function T with respect to b as

• 1st order derivative

dT

db
= (n− 1) a1b

n−2 + (n− 2) a2b
n−3 + ... + an−1 (46)

• 2nd order derivative

d2T

db2
= (n− 1) (n− 2) a1b

n−3 + (n− 2) (n− 3) a2b
n−4 + ... + an−2 (47)

• kth order derivative

dkT

dbk
=

k∏

i=1

(n− i) a1b
n−k +

k∏

i=2

(n− i) a2b
n−(k+1) + ... + an−k (48)

Providing that the response function for T (b) has a single independent argument be-
ing the input random variable of the problem, it is possible to employ the stochastic
perturbation technique based on the Taylor representation to compute up to mth

order probabilistic moments . Including the above formulas for the derivatives of
the response function into definition of probabilistic moments one can determine
the expectations, variances as well as any order random characteristics.

4. Computational analysis

4.1. 1D flow computations

Computational analysis deals here with a determination of the probabilistic velocity
profile by the Stochastic Finite Volume Methods for the computational domain
presented in Fig. 3 below.

The channel height is divided into 10 control volumes with the constant length
∆x = 0.1, the coefficient of variation for the diffusion coefficient is taken as 0.15,
while its expected value results from the Peclet number adopted in this study as
Pe = 40.
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Figure 7 Discretization and the boundary conditions for the 1D flow case

Of the results is given in Figs 8-11, where the first figure shows a comparison of the
deterministic upwind solution (expanded further towards the stochastic method)
with the analytical profile. It is clear from this comparison that the upwind tech-
nique needs some further modifications to achieve more satisfactory accuracy. Figs
9, 10 and 11 contain consecutively the profiles of the variances, standard deviations
as well as the third and fourth central probabilistic moments of the function u.
First two profiles are completed according to the 2nd, 4th and 6th order approaches,
while higher than the second moments are derived from the first, the lowest order
term within the corresponding expansions. It is clear from Fig. 9 and 10 that the
probabilistic convergence for α(d) = 0.15 is very fast since no differences between
the profiles obtained for various perturbation orders are observed. Let us note also
that the computations for the 4th central moments of the profile studied need larger
expansion because of the numerical discrepancies determined within the second last
subvolume, where (which cannot be justified theoretically at all).

4.2. 2D flow analysis

The entire computational part has been prepared and optimized in the MAPLE
symbolic environment, versions 10 and 11, using the internal statistics and linear
algebra options. This code is tested on the example of 2 finite volume discretisation
of the heat transfer in trapezoidal plate (Fig. 12) with constant source of heat ,
material density [9] and heat conductivity k as the Gaussian random quantity with
given first two probabilistic moments.

An approximation of the integrals by the midpoint rule and the derivatives at
CV faces by second–order central differences gives an algebraic system of equations.
There holds

Fe ≈ −17
9

(TE − TP )− 10 Fw = 60 Fs ≈ 6TP Fn ≈ 3TP − 60 (49)

for CV1 and

Fe = 0 Fw ≈ 17
9

(TP − TW ) + 10 Fs ≈ 6TP Fn ≈ 3TP − 60 (50)
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Figure 8 Comparsion of the upwind technique against the theoretical results
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Figure 9 The variances of the fluid velocity as a function of the vertical coordinate
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for CV2 where ∑
c

Fc =
∫

V

qdV = 18 (51)

for both CVs. Finally, after including the boundary conditions

TP = T1 and TE = T2 for CV1

TP = T2 and TW = T1 for CV2 (52)

we obtain the linear system of equation, which is a start point to the perturbation
analysis.

98T1 − 17T2 = 1386 and 98T2 − 17T1 = 1746 (53)

The zeroth, first and second order conductivity matrices for a random heat
conductivity for two CVs are defined as

sK

N

kgs

Nm
q

m

kg

×
=

×
=

=

2

8

1
3

k

r

y

x

H = 4m
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L2 = 2m L3 = 6m
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16
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+
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Figure 12 Boundary conditions and CV’s definition for trapezoidal plate

K0
2x2 = −k

2

[
98 −17
−17 98

]

K,b
2x2 = −1

2

[
98 −17
−17 98

]
(54)

K,bb
2x2 =

[
0 0
0 0

]
etc.

and the zeroth order vector of applied heat fluxes equals

Q0
2 =

[
1386 1746

]
(55)
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The final deterministic solution received in this case is obtained as

T0
2 =

[
2452
69 · 1

k
2884
69 · 1

k

]
(56)

All numerical results of the stochastic analysis are presented on Tables 1 and 2
as well as in Figs 13–18. Table 1 presents the statistical estimators of the ex-
pectations and variances for the temperatures computed using the deterministic
scheme of the Finite Volume Method in conjunction with the Monte–Carlo simu-
lation routines for 10, 100, 1.000, 10.000 and 100.000 random samples. They are
compared accordingly with the results of the response function approach embedded
into the Stochastic perturbation-based Finite Volume Method, which is completed
for the SFVM validation and to check the statistical convergence of basic discrete
probabilistic characteristics.

It is clear from the comparison of both tables with each other that the statistical
estimators for the increasing number of random trials tend to the result, which is
very close to the limiting value taken from the perturbation theory of the system-
atically increased order. It is especially clear from the expectations, whereas higher
order moments and statistics convergence need some more advanced computational
studies. Nevertheless, we would like to prove numerically the hypothesis that the
mth central probabilistic moment shows the following tendency:

lim
N,n→∞

∣∣µn
m(u(b))− µN

m(u(b))
∣∣ = 0 (57)

Table 1 Statistical estimators of the expectations and variances for the temperatures

n 101 102 103 104 105

E[T1] 18,76338 18,61372 18,19293 18,25017 18,20043
Var[T1] 18,004 10,12188 8,017031 8,654043 8,700688
Var[T2] 24,90684 14,00266 11,09081 11,97205 12,03658

Table 2 Expected values and variances computed by response function perturbation–based
method

n 2 4 6 8 10
E[T1] 18,1679 18,19505 18,19257 18,2098 18,21
E[T2] 21,36877 21,40043 21,40593 21,40288 21,40285
Var[T1] 7,103385 8,541564 8,832316
Var[T2] 9,826865 11,81698 12,18186
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Figure 13 Expected values of the temperatures T1 according to 2nd, 4th, 6th, 8th and 10th order
theories

Figure 14 Expected values of the temperatures T2 according to 2nd, 4th, 6th, 8th and 10th order
theories
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Figure 15 Standard deviations of the temperatures T1 according to 2nd, 4th and 6th order
theories

Figure 16 Standard deviations of the temperatures T2 according to 2nd, 4th and 6th order
theories
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Figure 17 Fourth order central probabilistic moments for T1 according to the lowest order theory

Figure 18 Fourth order central probabilistic moments for T2 according to the lowest order theory
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resulting from the perturbation theory µn
m(u(b)) converges to its statistical estima-

tor µN
m(u(b)).

Next, the expected values of the temperatures T1 and T2 are computed and
presented in Figs 13, 14, respectively, as the functions of the input coefficient of
variation ranging from 0.0 for deterministic analysis to 0.2. Those computations
are completed consistently with the 2nd, 4th, 6th, 8th and 10th order theories ac-
cording to eqn (39); the green curve denotes each time an approximation of the
highest order. Analogous comparison is done concerning the standard deviations
of the temperature T1 and T2 (Figs 15 and 16), however now we have a new in-
dependent parameter – ε, but in this case we compare the 2nd, 4th and 6th order
approximations only, considering a complex character for higher order formulas.
Finally, Figs. 17 anf 18 contain the fourth central moments of the previously ob-
served temperatures, where the presentation idea as the surfaces with perturbation
parameter and input coefficient of variation as the independent variables remains
the same as before.

One may conclude from those results that the convergence of the SFVM in its
generalized form is unquestionable for any values of the input coefficient of variation
and may be corrected by an additional modification of the perturbation parameter ε.
As it was expected, all the moments shown here are nonlinear functions of α(b) and
even for a maximum value of this parameter, a difference between the neighboring
perturbation order results decrease with an increase of the order n. Sometimes, like
in the case of the expectations, this convergence has asymptotic behavior, where
some higher orders bring the negative components and all probabilistic moments
not necessarily increase for n →∞.

5. Concluding remarks

Mathematical derivations and computational implementation of the Stochastic Fi-
nite Volume Method for unidirectional and plane problems show that a probabilistic
extension of the traditional deterministic Finite Volume Method towards random
flows modeling is a relatively easy task. The computational studies demonstrate
that the application of the generalized version of the stochastic perturbation tech-
nique returns almost the perfect agreement of the SFVM with the Monte–Carlo
simulation built upon the deterministic FVM approach. The symbolic compu-
tational environment appeared to be a good numerical platform to perform all
necessary computations presented here, like the similar studies contained in [6] ne-
glecting whether the straightforward perturbations or the response function method
are to be embedded. The future works on multivariable stochastic problems, the
random processes perturbation-based modeling as well as coupling of various phys-
ical fields will make the Stochastic Finite Volume Method a very attractive and
efficient computational tool.
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