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We expand ∆ρ the radial velocity of a group of stars moving around the center of
galaxy, firstly in circular orbits. The expansion of ∆ρ is performed up to the third order
of O(r/R0)3. A new result is encountered. The Oort constant is splitted into 3 parts
A1, A2, A3 instead of one constant A. Moreover we verify the problem when the motion
of the stars is elliptic. For proper motion components, there is no split of the second
Oort‘s constant B. In all involved expansions orders of magnitude higher than the third
in ∆R or r/R0 are neglected.
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1. Introduction

We devote the introduction to the denotation of the assumptions concerned with
fig. (1)&(2) later, in Part II, because it is the basis of the whole of our treatment.
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The radial velocity of the stars is freed from the effect of solar motion.
We assume a group of stars at position X, moving in a circular motion, firstly,

with velocity V around the galactic center C, that means perpendicular to CX; C
is the center of the galaxy.

V0 is the mean circular velocity perpendicular to CO of a group of stars close
to our Sun which belongs to our galaxy.

X; O situated in the galactic plane.
OC = R0; CX = R; G = NOX = G0 + L, where G is the galactic longitude,

G0 the longitude of C; G the galactic longitude of X in the (G, g) system.
V inclined to OX by an angle (90 − L − θ); the radial component of V is

V sin(L+θ), that of V0 is V0 sinL; ∆ρ the radial velocity of X relative to O is given
by

∆ρ = V sin(L+ θ)− V0 sinL. . . (1)

2. Oort’s constants for radial velocities

By Taylor’s theorem for the case of one variable:

f (x +∆x) = f (x) + ∆x
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since we deal with one variable only.
Accordingly we may write

V = f (R) = f (R0 +∆R) = f (R0) + ∆R
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The note means that the differential coefficients are evaluated at R = R0; z = 0.

V = V0 +∆R
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But we have

∆ρ =
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sinL (4)
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neglecting powers > 3 in ∆R.
From the following equality:
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By the solution of this second degree equation (8), in ∆R,
we get

∆R = −R0 ±R0
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By the binomial theorem expansion, and after some calculations, and reductions,
we find after the neglection of powers higher than the third in (r/R0),
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Evidently up to O(r/R0)
∆R = −r cosL (12)

Alternatively, Eq.(11) may be written as

∆R = R0
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where L = G−G0, that we may write
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2
+A3. (∆R)

3
(14)
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are the modified new Oort’s constants.
∆R is given by Eq. (13), so by squaring and cubing Eq.(13), we acquire

(∆R)
2
, (∆R)

3
after some simple trigonometric calculations, and we can assign

∆ρ. We notice that:

∆ρ = ∆R
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sinL = rA sin 2L (16)

where A is Oort constant, up to first order in r/R0, we have
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We notes that Oort’s constant splits into three A1, A2, A3 parts if we expand up
to power O(r/R0)

3, hich is an important result of the analysis.

3. Case of elliptic orbits

We proceed now to consider X,O to be at peri – apse of ellipses with focus at C the
center of the galaxy, or in other words to assume that the motion of the group of
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stars at X,O is elliptic around the center C. We can deduce the following formulas
geometrically:

R0

R
=

a2 (1− e2)

a1 (1− e1)
(18)

where a1, a2, e1, e2 are the semi – major axes and eccentricities of the two elliptic
orbits. We have
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By substitution for the value of r/R0 given by Eq. (29), we obtain the expression
for ∆R in terms of a1, a2, e1, e2, R0, L.

Whence from Eq. (14), we may find, by the substitution of the value of ∆R and
its second and third power, the value of ∆ρ algebraically, when we neglect powers
higher than the third in r/R0 in our expansions, and when the orbits of the two
groups of stars are elliptic and not circular. The Ai’s ; i = 1, 2, 3, are determined
from observations.

As a result of our algebraic computations, we find the following set
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Also from above, we can cite
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4. Oort’s Second constant for proper motion component

We may write

T = V R−1 (R0 cosL− r)− V0 cosL
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Performing the expansions for the expression of T up to the third power in ∆R, we
find
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i.e.

T = −ω0r +∆R
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where the angular velocity ω0 = V0/R0

We neglect in our article powers higher than the third in O(r/R0).
We notice that A1, A2, A3 appear in the above expression of T .
In addition, we have

T

r
= 2A cos2 L− V0

R0
= A cos 2L+B (44)

where

B = A− V0

R0
= A− ω0 (45)

B is Oort’s second constant for proper motion.
T denotes the transverse linear velocity of X.
The circular motion at X yield V cos(L + θ) along XH perpendicular to OX.

Similarly V0 cosL is parallel to XH.

5. Discussion

We used Taylor’s theorem and the Binomial theorem to execute the expansions
involved in this Part I paper, neglecting orders higher than the third in ∆R and
r/R0. This treatment yields three constants of Oort: A1, A2, A3. Through the
development we should evaluate (∆R), (∆R)2, (∆R)3, r, r2, r3. For the proper
motion component we deduced the expansion for T , neglecting orders higher than
O(∆R)3

and in terms of Ai (i = 1, 2, 3) represented by Eq. (43). ω0 = V0/R0 also appear
in this equation. We preferred stress on the dynamical aspects of the problem
discarding the purely astronomical ones. In part II we shall consider the influence
of the third order terms arising from the perpendicular distance z above the galactic
plane. This will be considered as a generalization for the case investigated in this
present Part I. We assume that the two groups of stars at X; O to be situated in
the galactic plane.
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