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This paper is concerned with the optimal path planning for reduction in residual vibra-
tion of two–flexible manipulator. So after presenting the model of a two–link flexible
manipulator, the dynamic equations of motion were derived using the assumed modes
method. Assuming a desired path for the end effector, the robot was then optimized by
considering multiple objective functions. The objective functions should be defined such
that in addition to guaranteeing the end effector to travel on the desired path, they can
prevent the undesirable extra vibrations of the flexible components. Moreover, in order
to assure a complete stop of the robot at the end of the path, the velocity of the end ef-
fector at the final point in the path should also reach zero. Securing these two objectives,
a time–optimal control may then be applied in order for the robot to travel the path in
the minimum duration possible. In all the scenarios, the input motor torques applied to
the Two–link are determined as the optimization variables in a given range. The opti-
mization procedures were carried out based on the GA (Genetic Algorithm) and BFGS
(Broyden–Fletcher–Goldfarb–Shanno) algorithms, and the results are then compared. It
is observe that the BFGS algorithm was able to achieve better results compared to GA
running a lower number of iterations. Then the final value of the objective function after
optimization indicates the decrease in the vibrations of the end effector at the tip of the
flexible link.

Keywords: optimization, two–link flexible manipulator, path planning, vibration, Ge-
netic Algorithm (GA), Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
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1. Introduction

Path planning of a robot between two given states is considered among the impor-
tant topics in designing industrial robots. Generally, the problem involves using an
optimization algorithm in order to find the optimal input torques, by application of
which to the system, the end effector of the robot travels the desired path with an
acceptable accuracy. Due to the effects of flexibility in flexible robots, achieving an
acceptable accuracy has always been a difficulty. Multiple contradictory objective
functions such as high stiffness and damping, low–mass, and high accuracy should
be considered simultaneously in the optimization process of these robots. Hence,
the selection of appropriate objective functions is of great importance in this regard.

Optimization of flexible manipulators is far more difficult than rigid manipulators
since multiple objectives such as high stiffness, high damping capacity, low link
weight, and high accuracy must be met in order to achieve a high performance.
The concept of optimization calls for objective function(s) which may be used as
a performance criterion for the design. In the optimization procedure of robots,
weight, workspace, supplied energy, etc. may be considered as the objective func-
tions of the design process, while each of which is dependent on several other design
variables. The optimization objectives in designing flexible manipulators include in-
creasing stiffness, reducing weight, increasing accuracy coefficient, reducing the end
effector deviation from the considered point, and maximizing the operation speed
and acceleration. For the accuracy to increase, the deviation of the end effector at
high speeds should be reduced. Furthermore, increases in speed and accuracy result
in increased efficiency.

Most research on optimization has been conducted using specific algorithms such
as genetic and gradient descent algorithms. Hiroyoki and Tetsoji [1] and Kojima [2]
used GA to reduce the remaining vibrations in a two–link rigid–flexible manipula-
tor and to optimize the motion trajectory. In [1], the angular velocity of the joints
was determined by a third degree polynomial with three parameters and a fitness
function with four parameters. In [2], the joint angles were described using a fourth
degree polynomial. Using GA, Anderson [3] optimized the system and investigated
the effect of different design parameters on the objective function. In the present
study, the control error and the energy were first minimized, and then, the effect of
different parameters on the objective function was determined. Optimization of Di-
amond robot is considered for the future work. Lee [4], first, derived the equilibrium
equations of the robot using the Euler–Lagrange method, and then investigated the
effect of optimization on different parameters such as natural frequency and dynam-
ical stress. Rahman [5] carried out an optimal design of a 3–DOF planar robot with
parallel links. He first described the kinematic model of the manipulator and derived
the equations of motion as well as the matrices of mass, stiffness, and damping. He
then considered two objective functions based on mass and workspace so that the
former is minimized and the latter is maximized. Hegde [6] used the Euler–Bernoulli
beam theory and the finite element method (FEM) to derive the dynamic equations
for the optimization process, for which the intermediate method was utilized. Neto
[7] proposed an optimization procedure for finding the optimized design structure
of a composite fiber in order to be used in flexible systems. The elastic energy of
the flexible bar, which itself is dependent on the layer orientations, was considered
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as the objective function in this procedure. The purpose of this optimization was to
reduce the elastic deformation of the plane, hence raising the need for planes with
higher stiffness.
In this study, after presenting the model of a two-link flexible manipulator, the
dynamic equations of motion were derived using the assumed modes method. As-
suming a desired path for the end effector, the robot was then optimized by taking
into account multiple objective functions. The objective functions were defined such
that in addition to guaranteeing the end effector to travel on the desired path, they
could prevent the undesirable extra vibrations of the flexible components. More-
over, in order to assure a complete stop of the robot at the end of the path, the
velocity of the end effector at the final point in the path should also reach zero.
After securing these two objectives, a time-optimal control may then be applied in
order for the robot to travel the path in the minimum duration possible. In all the
scenarios, the input motor torques applied to the Two-Link were determined as the
optimization variables in a given range such that all the considered objectives are
achieved.
As compared to the studies reviewed in the literature on the same subject, the main
differences and contributions of the paper lie in the following points: the considered
objective function, application of BFGS algorithm, optimization variables in order
to identify the most influential optimal parameter.

Figure 1 The schematic diagram of a two–link rigid–flexible manipulator

2. Equations of motion for the two–link rigid–flexible manipulator

The considered system in this section includes two members which, as demonstrated
in Fig. 1, are connected to each other by a revolute joint and are only capable of
planar motions. The first member is considered rigid, while the second is flexible
and is modeled as a flexible narrow beam. Longitudinal deformations are neglected
in the second member. It is assumed that the second member may freely bend in
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the horizontal plane but can resist vertical bending as well as torsion. Hence, the
Euler-Bernoulli theory may appropriately be used to describe the bending motions
of the flexible member. In addition, the Lagrange equation can be used to derive
the dynamic model of the two-link manipulator.
According to Fig. 1, X0OY0 is the fixed coordinate system, and X1OY1 and X2OY2

are the moving coordinate systems attached to the joints corresponding to the rigid
and flexible links, respectively. In addition, θ1 and θ2 are the rotation angles of
each of the links with respect to the X axis of their previous coordinate system,
and w(x, t) is the elastic transverse displacement of the flexible member. Since
the bending motions of a beam do not impose significant axial vibrations, axial
deformations were not included in our study. Two perpendicular pairs of unit
vectors (i1, j1) and (i2, j2) attached to the moving coordinates of the links are
shown in Fig. 1. The position vectors of the points on the Two-Link are R1 and
R2, which are obtained according to the following relations:

R1 =

[
x1

y1

]
=

[
r1 cos θ1
r1 sin θ1

]
(1)

R 2 =

[
x2

y2

]
=

[
l1 cos θ1 + r2 cos(θ1 + θ2)− w sin(θ1 + θ2)
l1 sin θ1 + r2 sin(θ1 + θ2) + w cos(θ1 + θ2)

]
(2)

where r1 and r2 are the distances of the points on links 1 and 2 to the origin of
their corresponding coordinate systems. Moreover, l1 and l2 are the lengths of link
1 and 2, respectively. The total kinetic energy of the system is calculated as follows
(Eq. (3)):

T =
1

2
J1θ̇

2
1 +

1

2
Jh(θ̇1 + θ̇2)

2 +
1

2
Mhl

2
1θ̇

2
1 +

1

2

∫ l2

0

ṘT
2 Ṙ2ρALdr2 (3)

where: J1 is the moment of inertia of the first link around its rotational axis, and
Jh and Mh are the moment of inertia and the mass of the driving motor acting
on the second link at point O2, respectively. ρAL is the mass linear density of the
second link, and the elastic potential energy is obtained as:

U =
1

2

∫ l2

0

EI(w′′(x, t))2dx (4)

where: EI is the flexural rigidity of the flexible link, and w′′(x, t) is the second
derivative of the transverse elastic displacement with respect to the variable x.
Since the flexible link is considered as a fixed support beam, the following boundary
conditions hold true at the two ends of this member:

w(0, t) = 0
∂

∂x
w(0, t) = 0

∂2

∂x2
w(l2, t) = 0

∂3

∂x3
w(l2, t) = 0 (5)

The general form of the equations of motions for the two–link rigid–flexible system
is obtained as follows according to Lagrange equations:



Vibration Optimization of a Two–Link Flexible Manipulator ... 257

d

dt

[
∂L

∂θ̇i

]
−

[
∂L

∂θi

]
= τi − αiθ̇i (i = 1, 2) (6)

d

dt

[
∂L

∂ẇj

]
−
[
∂L

∂wj

]
= 0 (j = 1, 2) (7)

where: L is the Lagrangian function defined as L = T − U , τi are the generalized
torques applied to the system, and αiθ̇i are the damping torques at the ith joint.
Substituting the equations of kinetic and potential energies in the above relations,
the dynamic equations of motion are concluded [8, 9]. Selecting the n first modes as
the assumed-modes for the discretization procedure, the following centralized model
is acquired for the system:

MẌ+KX = F(X, Ẋ) +Bu (8)

where: X = [θ1, θ2, w1, w2, ..., wn]
T

is the vector of generalized coordinates, M
and K are the mass and stiffness matrices, respectively, the vector F contains the
nonlinear expressions associated with the Coriolis and centripetal forces, and Bu
epresents the inputs to the system.

3. The employed optimization algorithm

3.1. Broyden–Fletcher–Goldfarb–Shanno algorithm

As a conventional gradient search method in nonlinear optimization, Hessian matrix
is used as the gradient coefficient to update the weights. The algorithms based on
this method are known as Newton and quasi–Newton methods, hence sharing similar
fundamentals. Similar to conjugate gradient method, these algorithms converge
at a high rate. The BFGS method is one of the most well-known and widely
used quasi-Newton methods [10]. This algorithm is generally used for optimization
of multivariable functions, the basis of which is an approximation of the Hessian
matrix. The order of convergence in algorithms based on BFGS is high. Issues such
as motion path planning optimization can be addressed using this algorithm. In
this method, after making an initial guess x(0), the gradient vector c is calculated
according to the objective function f(x).

c(0) = ∇f(x(0)) (9)

If the norm of the gradient is smaller than the suggested convergence value, the
program stops iterating, otherwise, iteration continues. Then, similar to all quasi-
Newton methods, the Hessian matrix is calculated. The initial value of the Hessian
matrix is selected as H(0) = I, and then the search direction for the kth iteration is
determined as:

d(k) = −H−1c(k) (10)

Then, the optimal step αk is selected such that f(xk+αkd
k) is minimized. After

correcting the optimal solution according to the following relation (Eq. (11)) :

x(k+1) = x(k) + αkd
(k) (11)
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And correcting the Hessian matrix based on the proposed relation in [8], the itera-
tion number is set to k = k + 1, and we return to the beginning of the algorithm.
Generally, the optimization stops based on the norm of the gradient of the objective
function and/or the allowed maximum number of iterations so that in case the given
tolerance for the norm of the gradient vector is not achieved, the algorithm does
not get stuck in the optimization loop.

4. Genetic Algorithm

Genetic algorithm (GA) is an efficient method for searching large, extensive spaces
to eventually get directed towards finding one optimal solution, the achievement
of which may not be possible during the lifetime of a person if manually searched
for [10]. In this method, using a series of coded variables, the design space is
transformed into the genetic space. The advantage of working with coded variables
lies in the ability of codes to transform a continuous space into a discrete one. GA
is significantly different than the traditional optimization algorithms. For instance,
GA deals with a population or a set of points at a given time while traditional
optimization methods can only be applied to a single specific point. What this
feature means is that GA processes a large number of designs at a time. Another
interesting feature is concerned with the basics of this method which, in fact, is built
upon a guided random search process. Hence, random operators adaptively inspect
the search space. Essentially, the three following concepts need to be clarified before
using GA:

1. Defining the objective or cost function,

2. Defining and implementing the genetic space,

3. Defining and implementing the genetic operators.

If the above items are defined correctly, we can make sure the algorithm performs
well and its performance can be increased by applying some alterations. Fig. 2
demonstrates a schematic of the GA with some specific details which will be ex-
plained in later sections.

5. Numerical optimization

In this section, by introducing the objective function and performing the optimiza-
tion procedure, the optimal torques to the manipulator are determined such that the
end effector starts moving from its stationary state, and after traveling the desired
path, reduce its speed to zero at the end of the path. When optimal torques are
applied, the end effector travels the path with the least vibrations possible. Optimal
control is needed to be used in order to achieve these objectives. However, since
the application of optimal control to such a nonlinear, complex system is a highly
difficult task, usually optimization methods are used instead. The aforementioned
objective function is considered as:

f = k1((x−X)2 + (y − Y ))2 + k2(ẋ
2
d + ẏ2d) (12)
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Figure 2 The mechanism of GA

where: x and y are the components of the points of the traveled path in the fixed
coordinate system by the end effector attached to the tip of the flexible link and X
and Y are the points of the desired path, ẋd and ẏd are the velocity components
of the end effector at the end of the path, k1 and k2 are the weight coefficients of
the objective function. The first expression, which is the difference of the points
obtained from the execution of the plan and those of the desired path, was consid-
ered for correct traveling of the path, and the second expression for reducing the
velocity to zero at the end of the path. The specifications of the links and driving
motor of the flexible link are given in Tab. 1. The empty cells in the table indicate
the parameters which are not present in the equations of motion.

Table 1 The specifications of the links and the driving motor of the flexible link

Length
(m)

Mass
(Kg)

Damping Ratio
(Nms)

Moment of Inertia
(Kgm2)

Rigid Link 0.61 — — 0.32
Flexible Link 0.52 0.07 — —
Motors — 0.23 0.17 0.02
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In the first part of this section, the values of the objective function in the GA and
BFGS is investigated and compared. The optimization process is first performed on
the rigid manipulator and then on the flexible–rigid manipulator by both algorithms.
It should be noted that the coefficients of the objective function for both algorithms
were k1 = 10000 and k2 = 100.

In order to run the optimization procedure, the considered total duration is divided
into smaller intervals. The manipulator is supposed to travel the path in 0.5 s with
11 steps. The path is considered an inclined straight line and the error is the devi-
ation from the desired path. The lower the error while traveling the path, the more
successful the optimization procedure and the less the vibrations of the end effector
on the flexible link. The torques at the first and second joints are the inputs to
the equations of the motion of the manipulator. After transforming the equations
of motion to the state-space form and substituting the initial input torques (the
guessed values), by running the direct dynamics and numerically integrating the
equations of motion, the position and velocity of the end effector on the second link
is calculated at different consecutive moments. The objective function is calculated
based on these values. In the main stage, by applying the optimization algorithm,
the input torques are changed to minimize the objective function and reduce the
vibrations of the manipulator. This procedure continues until the desired accuracy
is achieved and the optimization algorithm is terminated. As the GA mechanism
shown in Fig. 2 suggests, the initial population in the proposed algorithm is ran-
domly selected using the roulette wheel selection. Two–point crossover occurs with
a rate of 0.8 and point mutation with a rate of 0.5. The diversity operator makes
modifications to all genes with a probability of 0.8. The selection operator is con-
sidered comparative, meaning that between two chromosomes, the one with the
better fitness makes it to the next stage. The new population is sorted based on
their fitness values and the n chromosomes with the least fitness values are deter-
mined, where n is the number of the initial population. Determination of the n
chromosomes with the best fitness values results in elitism and increases the con-
vergence rate to the optimal solution. The number of population and iterations
were considered 20 and 400, respectively, as given in Tab. 2.

Table 2 The values considered for the parameters of GA

Symbol Value Variable name
Npop 20 Initial population
— Point mutation Mutation type
Pm 0.5 Mutation rate
fm Dependent on the objective

function (1−best/100)
Mutation intensity

— Two-point crossover Crossover type
Pc 0.8 Crossover rate
fc .75± .25×r Crossover intensity
Pd 0.8 Diversity rate
fd fm Diversity intensity
igen 400 Number of iterations
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The value of the objective function with respect to the number of iterations is
given in Fig. 3 for both algorithms. The objective function reaches the maximum
allowed iterations (400) in the GA algorithm before achieving the optimal solu-
tion while the BFGS achieves the desired tolerance after 19 iterations. It can be
concluded that the BFGS algorithm converges to the optimal solution at a higher
rate than the GA. The value of the objective function is considerably high for the
initial input torques. The slope of changes in the values of the objective function
is high but gradually decreases as it converges to the optimal solution. The final
value of the objective function after the optimization process indicates a reduction
of vibrations at the end effector installed on the flexible link.

Figure 3 The value of the objective function with respect to the number of iterations in the BFGS
and genetic algorithms

The path traveled by the end effector after optimization is shown in Fig. 4 for
both algorithms. It is obviously observed that the vibrations of the end effector after
optimization using BFGS algorithm are fewer than GA, and hence, the manipulator
travels the path with fewer errors. In the BFGS algorithm, the manipulator tracks
the desired path roughly adjacent to it. Regarding the GA, it should be noted
that the traveled path may be improved by increasing the number of iterations, but
the convergence rate would significantly be slow. The desired path and the travel
duration for both algorithms were similar.

The torques applied by the first and second joints before and after optimization
using the two algorithms are shown in the diagrams of Figs. 5 and 6. As shown,
many changes were made to the initial torques in order to achieve the optimal
solution. These changes are due to the random selection of the initial torques. The
closer the initial guesses to the optimal values, the faster the convergence rate in
achieving the optimal solution. Regarding the initial torques, it should be noted
that their values in both algorithms were selected such that the convergence rate
increased according to their corresponding algorithms.



262 Pouya, M. and Vahidi Pashaki, P.

Figure 4 Comparison between the traveled path by the manipulator and the desired path using
the BFGS and the genetic algorithms

a) BFGS algorithm b) Genetic algorithm

Figure 5 The torque in the first joint before and after optimization

a) BFGS algorithm b) Genetic algorithm

Figure 6 The torque in the second joint before and after optimization

In order to illustrate the effect of optimization on the velocities at the beginning
and end of the manipulator path, the zero-velocity condition at these two points
should be met. Table 3 demonstrates these changes before and after optimization,
and as shown, the velocity roughly decreases to zero.
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Table 3 The effect of the optimization in velocities at the beginning and end of the manipulator
path

Velocity in the beginning
of the path (m/s)

Velocity in the end of the
path (m/s)

0.5235 -0.8433 Before optimiza-
tion

0.0446 0.0626 After optimiza-
tion

6. Effect of initial population in the genetic algorithm

Since the objective function in the genetic algorithm is dependent on many param-
eters, efforts are focused on employing the best parameters possible. Obviously,
larger sizes for the initial population results in better results in the end, however,
on the other hand, it also causes longer durations to achieve the desired solution.
Tab. 4 demonstrates the advantages and weaknesses of selecting large population
sizes.

Table 4 The effect of initial population in optimization with genetic algorithm

Size of the initial
population Npop

Number of itera-
tions igen

Algorithm
runtime [s]

Value of the
optimal function

10 400 669.64 17.22
20 400 1253.06 11.49
30 400 1875.32 9.23
40 400 2689.12 7.45

6.1. Effect of number of iterations in the genetic algorithm on
the optimization of two–link rigid–flexible manipulator

The number of iterations is another parameter that highly affects the final solution.
As the number of iterations increases, better solutions are achieved, however, on
the other hand, longer runtimes are required for the calculations. In Table 5, the
algorithm was run for different numbers of iterations.

Table 5 The effect of the number of iterations in optimization using genetic algorithm

Number of iterations
igen

Number of initial
population Npop

Algorithm
runtime [s]

Value of optimal
function

300 10 394.3 22.19
400 10 669.64 17.22
500 10 849.28 14.75
600 10 1004.36 10.59
700 10 1246.49 8.37
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7. Performance improvement of the genetic algorithm for a rigid–flexible
manipulator

Efforts were made to increase the convergence rate of the employed GA as well
as its accuracy. The number of steps for traveling the desired path is one of the
factors affecting the convergence rate of the algorithm. For instance, assuming 400
iterations for the algorithm, if the number of steps is decreased from 11 to 6, the
algorithm runtime is reduced by half while the value of the objective function is
doubled.

Increasing the mutation rate in low values of the optimal function is another
effort to increase the converging rate in the GA. Although in the beginning of the
optimization process, usually the values of the optimal function quickly decrease,
this value rarely decreases as we approach the end of the process. Hence, we may
multiply the mutation rate by a factor to increase the chromosome mutations for
lower values of the optimal function.

As it was mentioned in the previous sections, the BFGS algorithm outperforms
the GA. However, the advantage of GA over BFGS algorithm is that its different
parameters can freely be adjusted by the users. Hence, the performance of GA can
be further improved than that of the BFGS algorithm by changing its parameters
or presenting new operators. To this end, in order to improve the convergence rate
and decrease the value of the objective function in GA, a novel heuristic algorithm
is presented and integrated with the algorithm, the details of which are given in the
following section.

8. Conclusion

In this study, after presenting a model of a two-link flexible manipulator, the dy-
namic equations of motion were derived using the assumed modes method. Then,
considering the desired path for the end effector of the manipulator, the manipu-
lator was optimized by utilizing a multivariable objective function. The objective
functions were selected such that in addition to guaranteeing the end effector to
travel on the desired path, they can prevent the undesirable extra vibrations of the
flexible components. Moreover, in order to assure a complete stop of the robot at
the end of the path, the velocity of the end effector at the final point in the path
should also reach zero. In order to validate the results, the optimization process
was carried out using the BFGS algorithm and the genetic algorithm. In all the
scenarios, the input motor torques applied to the Two-Link are determined as the
optimization variables in a given range such that all the considered objectives are
achieved. According to the results, it was observed that the BFGS algorithm was
faster than GA in converging to the optimal solution. The slope of changes in
the values of the objective function is high but gradually decreases as it converges
to the optimal solution. The BFGS algorithm was able to achieve better results
compared to GA running a lower number of iterations. Since the final value of the
objective function after optimization indicates the decrease in the vibrations of the
end effector at the tip of the flexible link, the efficiency of optimization results in
the reduction of vibration.
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