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In this paper, we study the effects of magnetic field and initial stress on plane waves
propagation. We have investigated the problem of reflection and refraction of thermoe-
lastic waves at a magnetized solid-liquid interface in the presence of initial stress, in
the context of CT (Classical theory) of thermoelasticity, the problem has been solved.
The boundary conditions applied at the interface are: (i) continuity of the displacement,
(ii) vanishing of the tangential displacement, (iii) continuity of normal force per unit
initial area, (iv) vanishing of the tangential stress and (v) continuity of temperature.
The amplitudes ratios for the incident p-, T-, and SV- waves have been obtained. The
reflection and transmission coefficients for the incident waves are computed numerically,
considering the initial stress and magnetic field effects and the results are represented
graphically.

Keywords: initial stress, CT theory, rotating frame, reflection, refraction, thermoelasti-
city.

1. Introduction

Recently, attention has been focused on the theory of thermoelasticity because of
its utilitarian aspects in diverse fields, especially in Structure Mechanics, Biology,
Geology, Geophysics, Acoustics, Plasma Physics. The generalized thermoelasticity
theories were developed to eliminate the paradox inherent in the classical theories
predicting infinite speed of propagation of heat. The generalized thermoelasticity
theories admit the so-called second-sound effects, predicting only finite velocity of
propagation of heat. The two theories (LS and GL) ensure finite speeds of propaga-
tion for the heat wave. The theory of elasticity with nonuniform heat which was in
half-space subjected of thermal shock in this context which known as the theory of
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uncoupled thermoelasticity and the temperature is governed by a parabolic partial
differential equation in temperature term only has been discussed by Danilovskaya
[1]. Wide spread attention has been given to thermoelasticity theories which con-
sider finite speed for the propagation of thermal signal. Initial stresses develop in
the medium due to various reasons, such as the difference of temperature, process of
quenching shot pinning and cold working, slow process of creep, differential external
forces, and gravity variations. The Earth isunder high initial stress and, therefore,
it is of great interest to study the effect of these stresses on the propagation of elastic
waves. Alot of systematic studies have been carried out on the propagation of elastic
waves. Biot [2] showed that the acoustic propagation under initial stresses would be
fundamentally different from that under stress free state. Lord and Shulman [3] re-
ported a new theory based on a modified Fourier’s law of heat conduction with one
relaxation time. Later on, a more rigorous theory of thermoelasticity was formu-
lated by Green and Lindsay [4] introducing two relaxationtimes. These non-classical
theories are often regarded as the generalized dynamic theories of thermoelasticity.
Various problems have been investigated and discussed in the light of these two
theories and the studies reveal some interesting phenomena. Green and Naghdi [5,
6] re-examined the basic postulates of thermo-mechanics and discussed undamped
heat waves in an elastic solid. Green and Naghdi [7], Chandrasekharaiah [8] dis-
cussed different problems in thermoelasticy without energy dissipation. Problems
on wave propagation phenomena in coupled or generalized thermoelasticity were
discussed by Sinha and Elsibai [9] and Abd-alla and Al-Dawy [10]. Abd-alla et al.
[11] investigated the reflection of generalized magneto-thermo-viscoelastic waves at
the boundary of a semi-infinite solid adjacent to vacuum.Sinha and Elsibai, [12]
investigated the re?ection and refraction of thermoelastic waves at the interface of
two semi-in?nite media with two relaxation times. The representative theories in
the frame of generalized thermoelasticity are presented by Hetnarski and Ignaczak
[13]. Singh [14] investigated reflection and transmission of plane harmonic waves at
the interface between liquid and micropolar viscoelastic solid with stretch. Kumar
and Sarathi [15] studied reflection and refraction of thermoelastic plane waves at
the interface between two thermoelastic media without energy dissipation.Othman
and Song [16] discussed plane waves reflection from an elastic solid half-space under
hydrostatic initial stress without energy dissipation.Abd-Alla and Abo-Dahab [17]
discussed the influence of the viscosity on the reflectionand transmission of plane
shear elastic waves at the interface of twomagnetized semi-infinite media.The gen-
eralized magneto-thermoelasticity model with two relaxation times in an isotropic
elastic medium under the effect of reference temperature on the modulus of elasticity
is investigated by Othman and Song [18]. Estimation of the magnetic field effect in
an elasticsolid half-space under thermoelastic diffusion is discussed by Abo-Dahab
and Singh [19]. The impact of magnetic field, initialpressure, and hydrostatic initial
stress on the reflection of P and SV waves considering a Green Lindsay theory is
discussed by Abo-Dahab and Mohamed [20].Abo-Dahab et al. [21] studied the ro-
tation and magnetic field effects on P wave reflection from a stress-free surface of an
elastic half-space with voids under one thermal relaxation time. Reflection of P and
SV waves from stress-free surface of an elastic half-space under the influence of mag-
netic field and hydrostatic initial stress without energy dissipation is investigated
by Abo-Dahab [22]. Abo-Dahab et al. [23] studied relaxation times and magnetic
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field effects on the reflection of thermoelastic waves from isothermal and insulated
boundaries of a half-space. Abo-Dahab and Asad [24] estimated Maxwell’s stresses
effect on the reflection and transmission of plane waves between two thermo-elastic
media in the context of GN model. Deswal et al. [25] studied the reflection and
refraction at an interface between two dissimilar, thermally conducting viscous liq-
uid half-spaces. Chakraborty and Singh [26] studied the problem of reflection and
refraction of thermo-elastic wave under normal initial stress at a solid-solid interface
under perfect boundary condition. Abd-Alla et al. [27] studied the radial defor-
mation and thecorresponding stresses in a homogeneous annular fin of an isotropic
material.

Recently, Abo-Dahab and Singh [28] investigated the effects of rotation and voids
on the reflection of P waves from stress-free surface of an elastic half-space un-
der magnetic field, initial stress and without energy dissipation. Reflection and
refraction of P-, SV- and thermal waves, at an initially stressed solid-liquid inter-
face in generalized thermoelasticity has been discussed by Singh and Chakraborty
[29]. Abo-Dahab and Salama [30] discussed plane thermoelastic waves re?ection
andtransmission between two solid media under perfect boundary conditions and
initial stresswithout and with influence of a magnetic field. Abd-Alla et al. [31] in-
vestigated the effect of rotation on the peristaltic flow of a micropolar fluid through
a porous medium in the presence of an external magnetic field. Abd-Alla et al.
[32] discussed the effects of rotation and initial stress on the peristaltic transport of
a fourth grade fluid with heat transfer and induced magnetic field. Song, et al. [33]
investigated the reflection and refraction of micropolar magneto-thermoviscoelastic
waves at the interface between two micropolar viscoelastic media.

In this paper, p-, T, and SV-waves propagation is investigated under the influence
of magnetic field and initial stress. The problem of reflection and refraction of ther-
moelastic wave at asolid-liquid interface in presence of initial stress and magnetic
field considering CT theory has been solved. The boundary conditions at the in-
terface are applied to solve the problem. The appropriate expressions to find the
amplitudes ratios for the three incidence waves (P-, SV, and T-wave) have been
obtained to calculate the reflection and transmission coefficients numerically. The
effects of the initial stress and magnetic field are represented graphically.

2. Formulation of the problem

Let us consider the plane interface between a solid half-space of a homogeneous,
isotropic and elastic material and a liquid medium with a primary temperature

T0. A magnetic field acts in the z-direction. The magnetic field effect
−→
H in both

two media acts in the z-direction, but the medium M (solid) only is under initial
stress P. A plane p- or SV-wave is incident in medium M on the plane interface. It
is re?ected to p-wave (dilatational wave), SV-wave (rotational wave) and thermal
wave (dilatational wave). The rest of the wave continues to travel in the other
medium M

′
after refraction, as p-wave and thermal wave as shown in (Fig. 1).

We assume a system of orthogonal Cartesian coordinates oxyz with origin ‘o’ in the
plane y = 0. Since the problem two-dimensional, we restrict our analysis to plane
strain parallel to the oxy-plane. Hence all the ?eld variables depend only on x, y
and time t.
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Figure 1 Geometry of the problem

where, θ is the angle of incidence for a plane waves, θ1 and θ2 are the angle of
reflected waves, θ

′

1 and θ
′

2 are the angles for the transmitted waves,H is the magnetic
field vector acting in the z-direction, A1, A3 and A5 are the amplitudes of the
incident waves, A2, A4 and A6 are the amplitudes of reflected waves, and A

′

2and
A

′

4 are the amplitudes of the transmitted T- and SV-waves, respectively (there are
two transmitted waves only in medium M’).
The initial stress affects medium M only, as shown in Fig. 2, P = S22 - S11; S11 and
S22 are the normal stresses in the x and y directions, respectively.

Figure 2 Components of initial stress in solid medium
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3. Basic equations

1) The dynamical equations of motion the rotating frame of reference for a plane
strain under initial stress in the absence of heat source, as given by Biot [2], taking
into account the presence of Lorentz force are:

∂S11

∂x
+

∂S21

∂y
− P

∂ω̄

∂y
+ F1 = ρ

∂2u

∂t2

(1)

∂S21

∂x
+

∂S22

∂y
− P

∂ω̄

∂x
+ F2 = ρ

∂2v

∂t2

where: ω̄ = 1
2

(
∂v
∂x − ∂u

∂y

)
, F1 and F2are the components of the magnetic field in x

and y directions, respectively.
2) The stress-strain relations with incremental isotropy are given by Biot [2]:

S11 = (λ+ 2µ+ P ) exx + (λ+ P ) eyy − γ

(
T + τ1

∂T

∂t

)
S22 = λexx + (λ+ 2µ) eyy − γ

(
T + τ1

∂T

∂t

)
(2)

S12 = 2µexy

3) The incremental strain-components are given by Biot [2]:

exx =
∂u

∂x
eyy =

∂v

∂y
exy =

1

2

(
∂u

∂y
+

∂v

∂x

)
(3)

4) The modified heat conduction equation is:

K∇2T = ρCe

(
∂T

∂t
+ τ0

∂2T

∂t2

)
(4)

+T0γ

[
∂

∂t

(
∂u

∂x
+

∂v

∂y

)
+ τ0δij

∂2

∂t2

(
∂u

∂x
+

∂v

∂y

)]
5) Taking into account the absence of displacement current, the linearized Maxwell’s
equations governing the electromagnetic field for a slowly moving solid medium with
perfect electrical conductivity are:

curl
−→
h =

−→
J curl

−→
E = −µe

∂
−→
h

∂t

div
−→
h = 0 div

−→
E = 0

(5)

where: −→
h = curl(−→u ×−→

H0)
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We have used: −→
H =

−→
H0 +

−→
h (x, z, t)

−→
H0 = (0, 0, H)

then:

Fx = µeH
2

(
∂2u

∂x2
+

∂2v

∂x∂y

)
(6)

Fy = µeH
2

(
∂2u

∂x∂y
+

∂2v

∂y2

)
Again, Maxwell’s stress is given as:

τij = µe [Hihj +Hjhi −Hkhkδij ] (7)

which reduces to: τ11 = τ22 = µeH
2
(

∂u
∂x + ∂v

∂y

)
, τ12 = 0.

4. Solution of the problem

With the help of Eqs. (2–3) and (7) in Eq. (1), one gets:

(
λ+ 2µ+ P + µeH

2
) ∂2u

∂x2
+

(
λ+

P

2
+ µ+ µeH

2

)
∂2v

∂x∂y

(8)

+

(
µ+

P

2

)
∂2u

∂y2
= ρ

∂2u

∂t2
+ γ

(
∂T

∂x
+ τ1

∂2T

∂x∂t

)

(
µ− P

2

)
∂2v

∂x2
+

(
λ+ e

P

2
+ µ+ µeH

2

)
∂2u

∂x∂y
+
(
2µ+ λ+ µeH

2
)
e
∂2v

∂y2

(9)

= ρ

(
∂2u

∂t2

)
+ γ

(
∂T

∂y
+ τ1

∂2T

∂y∂t

)
To separate the dilatational and rotational components of strain, we introduce

displacement potentials Φ and Ψ defined by the following relations:

u =
∂Φ

∂x
− ∂Ψ

∂y
v =

∂Φ

∂y
+

∂Ψ

∂x
(10)

From Eqs. (8) and (10), the following equations are obtained:

∇2Φ =
ρ

(λ+ 2µ+ P + µeH2)

(
∂2Φ

∂t2

)
+

γ

(λ+ 2µ+ P + µeH2)

(
T + τ1

∂T

∂t

)
(11)

∇2Ψ =
ρ(

λ+ P
2

) [∂2Ψ

∂t2

]
(12)
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From Eqs. (9) and (10), we get:

∇2Φ =
ρ

(λ+ 2µ+ µeH2)

[
∂2Φ

∂t2

]
+

γ

(λ+ 2µ+ µeH2)

(
T + τ1

∂T

∂t

)
(13)

∇2Ψ =
ρ(

µ− P
2

) [∂2Ψ

∂t2

]
(14)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 .

Using Eq. (10) in (4), we get:

K∇2T = ρCe

(
∂T

∂t
+ τ0

∂2T

∂t2

)
+ T0γ

∂

∂t

(
1 + t0δij

∂

∂t

)
∇2Φ (15)

5. Solution using CT theory

In Green-Lindsay theory: τ1 = τ0 = 0 and δji = 0. Eqs. (11) and (14) can be
rewritten as:

∇2Φ =
1

C2
1 (1 +RH)

∂2Φ

∂t2
+

γ

ρC2
1 (1 +RH)

T (16)

∇2Ψ =
1

C2
2

[
∂2Ψ

∂t2

]
(17)

where: RH =
C2

A

C2
1
, C2

1 = λ+2µ+P
ρ , C2

2 =
µ−P

2

ρ , C2
A = µeH

2

ρ . Here RH , CA, C1,

C2, RH , CA, C1, C2, represent the Alfven speed, the sensitive part of the magnetic
field, the velocities of isothermal dilatational and rotational waves respectively, in
medium M.
Using CT theory, Eq. (15) may be written as:

K∇2T = ρCe
∂T

∂t
+ T0γ

∂

∂t

(
∇2Φ

)
(18)

Eliminating T from Eqs. (16) and (18), we obtain a fourth order differential equation
in terms of Φ as:

T =

[
ρC2

1 (1 +RH)

γ
∇2Φ− ρ

γ

(
∂2Φ

∂t2

)]
(19)

C2
3 (1 +RH)∇4Φ−

[
(1 +RH + εT )

∂

∂t
+

C2
3

C2
1

∂2

∂t2

]
∇2Φ+

1

C2
1

∂3Φ

∂t3
= 0 (20)

where, C2
3 = K

ρCe
, εT = T0γ

2

ρ2CeC2
1
(εT is thermoelastic coupling constant of the solid

medium M).
We now assume a solution in the form:

Φ = f (y) exp[ik (x− ct)]

Ψ = g (y) exp[ik (x− ct)] (21)

T = h (y) exp[ik (x− ct)]

where c = ω
k .
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Substituting Eq. (21) in (20), one gets:

(1 +RH)
d4f

dy4
+

[
−2k2 (1 +RH) + ikc

(1 +RH + εT )

C2
3

+
k2c2

C2
1

]
d2f

dy2

(22)

+

[
k4 (1 +RH)− k4c2

C2
1

+
ik3c3

C2
1C

2
1

(
1− C2

1

C2
(1 +RH + εT )

)]
f(y) = 0

The function Φ in Eq. (21) takes the form:

Φ = [A1 exp (ikm1y) +A2 exp (−ikm1y)

(23)

+ A3 exp (ikm2y) +A4 exp (−ikm2y)] exp [ik (x− ct)]

where m1 =
√
q2c2 − 1, m2 =

√
p2c2 − 1 and:

p2 =
1

2c21c
2
3

[{
c23 +

i (1 +RH + εT ) c
2
1

ω

}
+

√
N

]
(24)

q2 =
1

2c21c
2
3

[{
c23 +

i (1 +RH + εT ) c
2
1

ω

}
−
√
N

]
(25)

N =

[
c23 +

i (1 +RH + εT ) c
2
1

ω

]2
− 4i (1 +RH) c21c

2
3

ω
(26)

Using Eq. (21) in (17), we get:

d2g

dy2
+ k2

(
c2

c22
− 1

)
g = 0. (27)

Eq. (26) suggests that the solution yields two values of g (y), Eq. (20) can be
written as:

Ψ =
[
A5 exp (ikm3y) +A6 exp (−ikm3y)

]
exp [ik (x− ct)] (28)

where:

m3 =

√
c2

c22
− 1.

The constants Ai(i = 1, 2, 3, 4, 5, 6) in pairs represent the amplitudes of incident
and reflected thermal, P- and SV-waves respectively.
Substituting from Eqs. (24) into Eq. (11), we get the value of h (y). Eq. (19)
becomes:

T = ρ
γ

[
b1 (A1 exp (ikm1y) +A2 exp (−ikm1y))
b2 (A3 exp (ikm2y) +A4 exp (−ikm2y))

]
exp [ik (x− ct)] (29)

where:

b1 = ω2
(
1− (1 +RH) q2c21

)
b2 = ω2

(
1− (1 +RH) p2c21

)
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Setting µ = P = 0in Eqs. (1–4) we obtain the basic equations for a non-viscous
liquid medium in the absence of body forces.Using them, we get thedisplacement
equations and thetemperature field equation, valid for the liquid mediumM

′
. These

equations read:(
λ

′
+ µeH2

) ∂2u
′

∂x2
+
(
λ

′
+ µ′

eH2
) ∂2v

′

∂x∂y
= ρ

′ ∂2u
′

∂t2
+ γ

′ ∂T
′

∂x
(30)

(
λ

′
+ µeH2

) ∂2u
′

∂x∂y
+
(
λ

′
+ µ′

eH2
) ∂2v

′

∂y2
= ρ

′ ∂2v
′

∂t2
+ γ

′ ∂T
′

∂y
(31)

k
′
∇2T

′
= ρ

′
C

′

e

∂T
′

∂t
+ T

′

0γ
′ ∂

∂t

(
∇2Φ

′
)

(32)

The primes have been used to designate the corresponding quantities in the liquid
medium M

′
as already been defined for the solid medium M.

Taking:

u =
∂Φ

′

∂x
, v =

∂Φ
′

∂y
(33)

we get:

∇2Φ′ =
1

C
′2
1

(
1 +R

′
H

) ∂2Φ′

∂t2
+

γ
′

ρ′C
′2
1

(
1 +R

′
H

)T ′
(34)

K
′
∇2T

′
= ρ

′
C

′

e

∂T
′

∂t
+ T

′

0γ
′ ∂

∂t

(
∇2Φ

′
)

(35)

where C
′2
1 = λ

′

ρ′

Solving Eqs. (34) and (35) and proceeding exactly in a similar way as for the solid
medium M, we get the appropriate solution for Φ

′
and T

′
as:

Φ
′
=
[
A

′

2 exp
(
ikm

′

1y
)
++A

′

4 exp
(
ikm

′

2y
)]

exp [ik (x− ct)] (36)

T
′
=

ρ
′

γ′

[
b
′

1A
′

2 exp
(
ikm

′

1y
)
+ b

′

2‘A
′

4 exp
(
ikm

′

2y
)]

exp [ik (x− ct)] (37)

where:

b
′

1 = ω2
(
1−

(
1 +R

′

H

)
q
′2C

′2
1

)
b
′

2 = ω2
(
1−

(
1 +R

′

H

)
P

′2C
′2
1

)
(38)

The constants A
′

2 and A
′

4 represent the amplitudes of refracted thermal and p-waves,
respectively.
In CT theory, the solutions for Φ

′
and T

′
are in the same form as in Eqs. (23),

(26), (28), (36) and (37), respectively, with m
′

1 =
√

q′2c′2 − 1, m
′

2 =
√
p′2c′2 − 1

and τ = τ
′
= 1, where:

q
′2, p

′2 =
1

2C
′2
1 C

′2
3

c
′2
3 +

i
(
1 +R

′

H + ε
′

T

)
C

′2
1

ω

±
√
N ′



N
′
=

C ′2
3 +

i
(
1 +R

′

H + ε
′

T

)
C

′2
1

ω

2

−
4i
(
1 +R

′

H

)
C

′2
1 C

′2
3

ω
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6. Boundary conditions

1) The normal displacement is continuous at the interface, i.e. v = v′. This leads to:

∂Φ

∂y
+

∂Ψ

∂x
=

∂Φ′

∂y
(39)

Using Eqs. (23), (28) and (36) in the above continuity relation, we get:

m1A1 −m1A2 +m2A3 −m2A4 +A5 +A6 −m
′

1A
′

2 −m
′

2A
′

4 = 0 (40)

2) The tangential displacement must vanish at the interface i.e. u = 0. This
leads to:

∂Φ

∂x
− ∂Ψ

∂y
= 0

Using Eqs. (23) and (28) in the above boundary condition, we get:

A1 +A2 +A3 +A4 −m3A5 +m3A6 = 0 (41)

3) The normal force per unit initial area must be continuous at the interface, i.e.
∇fy = ∇f

′

y. This leads to s22 + τ22 = s′22 + τ ′22 where:

τij = µe

[
Hihj +Hjhi − (

−→
H ·

−→
h )δij

]
i, j = 1, 2, 3

Using Eqs. (2), (3) and (7) for medium M, the corresponding equations for medium
M

′
and Eqs. (10) and (32), we obtain:

(
λ+ µeH

2
) (∂2Φ

∂x2
+

∂2Φ

∂y2

)
+ 2µ

(
∂2Φ

∂y2
+

∂Ψ

∂x∂y

)
− γ

(
T + τ1

∂T

∂t

)
(42)

=
(
λ

′
+ µ

′

eH
′2
) (∂2Φ

′

∂x2
+

∂2Φ
′

∂y2

)
− γ

′
(
T

′
+ τ1

∂T ′

∂t

)
Substituting from Eqs. (23), (28), (29), (36) and (37) into the above equation, we
get: [

− (2 + β) + c2
(

1

C2
2

− βq2
)]

(A1 +A2)

+

[
− (2 + β) + c2

(
1

c22
− βp2

)]
(A3 +A4) (43)

(2 + β) m3 (A5 −A6)− ρ∗
(
1 +m2

3

) (
A

′

2 +A
′

4

)
= 0

where ρ∗ = ρ′

ρ and β = P
ρC2

2
.

4) The tangential force per unit initial area must vanish at the interface, i.e.,
∇fx = 0. This leads to s12 + Pexy + τ12 = 0.
Using Eqs. (2), (3), (7), (10), (23) and (28), we obtain:
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m1 (A1 −A2) +m2 (A3 −A4)−
1

2

(
m2

3 − 1
)
(A5 +A6) = 0 (44)

5) Temperature must be continuous at the interface, i.e, T = T
′
.

Using Eqs. (29) and (36) and simplifying, we get:(
1− (1 +RH) q2C2

1

)
(A1 +A2) +

(
1− (1 +RH) p2C2

1

)
(A3 +A4)−

− ρ∗
γ∗τ∗

[(
1−

(
1 +R

′

H

)
q
′2C

′2
1

)
A

′

2 +
(
1−

(
1 +R

′

H

)
p

′2C
′2
1

)
A

′

4

]
= 0

(45)

where γ∗ = γ
′

γ and τ∗ = τ
′

τ .

7. Equations for the reflection and refraction coefficients

To consider the reflection and refraction of a thermoelastic plane wave which is
incident at the solid-liquid interface at y = 0 making an angle θ with the y–axis, we
have three different cases.

Case I: For p-wave incidence, we put c = p−1cosec θ and A1 = A5 = 0

Case II: For thermal wave incidence, we put c = q−1cosec θ and A3 = A5 = 0.

Case III: For SV-wave incidence, we put c = c2cosec θ and A1 = A3 = 0.

Generalizing, we get a system of five non-homogeneous equations for an incident
thermoelastic plane wave:

5∑
i=1

aijZj = yi j = 1, 2, ...5) (46)

where:

a11 = −m1, a12 = −m2, a13 = 1, a14 = −m‘
1, a15 = −m‘

2, a22 = a21 = 1

a23 = m3, a24 = a25 = 0, a31 =

[
− (2 + β) + c2

(
1

C2
2

− βq2
)]

a32=

[
− (2 + β) + c2

(
1

C2
2

− βq2
)]

, a24 = a25 = 0

a31 =

[
− (2 + β) + c2

(
1

C2
2

− βq2
)]

, a32=

[
− (2 + β) + c2

(
1

C2
2

− βq2
)]

a33 = − (2 + β) m3, a34 = a35 = −ρ∗
(
1 +m2

3

)
, a41 = −m1, a42 = −m2

a43 = −0.5
(
m2

3 − 1
)
, a44 = a45 = 0, a51 =

(
1− (1 +RH) q2c21

)
a52 =

(
1− (1 +RH) p2c21

)
, a53 = 0, a54 = − ρ∗

γ∗τ∗

(
1−

(
1 +R

′

H

)
q
′2c

′2
1

)
a55 = − ρ∗

γ∗τ∗

(
1−

(
1 +R

′

H

)
p

′2c
′2
1

)
(47)

where, Zj (j = 1, 2...5) are the ratios of amplitudes of the reflected thermal, p-,
SV-waves and refracted thermal, p-waves to that of incident wave respectively.

For the three particular cases, we get:
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(I) For the incident p-wave:

y1 = a12, y2 = −a22, y3 = −a32, y4 = a42, y5 = −a52,

Z1 = A2

A3
, Z2 = A4

A3
, Z3 = A6

A3
, Z4 =

A
′
2

A3
, Z5 =

A
′
4

A3

(II)For the incident thermal wave:

y1 = a11, y2 = −a21, y3 = −a31, y4 = a41, y5 = −a51,

Z1 = A2

A1
, Z2 = A4

A1
, Z3 = A6

A1
, Z4 =

A1
2

A1
, Z5 =

A‘
4

A1

(III)For the incident SV-wave:

y1 = −a13, y2 = a23, y3 = a33, y4 = −a43, y5 = a53,

Z1 = A2

A5
, Z2 = A4

A5
, Z3 = A6

A5
, Z4 =

A
′
2

A5
, Z5 =

A
′
4

A5

Eq. (46) takes a matrix equation as follows: AZ = Y .

8. Numerical results and discussion

With a view to illustrate the numerical analysis of the expressions for the reflection
and refraction coefficients, we have used the data for crust as solid medium following
Choi and Gurnis [34] and water as liquid medium.

For solid medium (M Crust)

λ = µ = 3× 1010 Nm−2, αt = 1.0667× 10−5 K−1,
Ce = 1100 JKg−1K−1, ρ = 2900Kgm−3, K = 3Wm−1K−1

For liquid medium (M’ Water)

λ
′
= µ

′
= 20.4× 109 Nm−2, α

′

t = 69× 10−6 K−1,

C
′

e = 4187 JKg−1K−1, ρ
′
= 1000Kgm−3, K

′
= 0.6Wm−1K−1

Taking into consideration RH = R
′

H , ω = 7.5× 1013 s−1, T0 = 300K.[35].

Figs. 3-5, 6-8 and 9-11 show the amplitudes ratios variation with the angle of
incident p-wave, T-wave and SV-wave, respectively. The solid line (—) corresponds
to the case with initial stress or magnetic field, the dotted line (...) for the case
without initial stress or magnetic field.

Figs. 3 and 5 show the amplitudes ratios Zi (i = 1,2,. . . ,5) variation with the
angle of incidence of p-wave for variations of the magnetic field with and without
initial stress. It appears that the amplitudes of the reflected T-wave, refracted
T- and p-waves start from their maximum values and decreases to zero atθ =
90o, amplitude ratio of the reflected p-wave tends to unity, on the other hand,
the reflection coefficient for the reflected SV-wave equals zero at θ = {0o, 90o},
increases to its maximum value and then decreases with the increasing of the angle
of incidence.



On Generalized Magneto–Thermoelastic P-, T- and SV-Waves ... 909

θ θ θ

2
Z

3Z
1Z

ReflectedT-wave

Reflected p-wave Reflected SV-wave

Transmitted p-wave

θ θ

5
Z

4
Z

Transmitted T-wave

Figure 3 Variation of the amplitudes zi (i=1, 2,, 5) with the angle of incidence of p-wave for
variation of magnetic field: H = 0.1, 0.2, 0.3, 0.4, P = 1.1(10)11(—), P = 0 (...)
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Figure 4 Variation of the amplitudes zi (i = 1, 2,, 5) with the angle of incidence of p-wave for
variation of initial stress: P = (1.1, 1.2, 1.3, 1.4) (10)11, H = 0.3 (—), H = 0 (...).
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Figure 5 Variation of the amplitudes zi (i = 1, 2,, 5) with respect to of p-wave with and without
variation of initial stress

Physically, we conclude that the reflected and transmitted T- and p- waves start
from their maximum values and tend to zero for reflected T-wave, refracted T-
and p-waves that indicateinterruption of these waves at the maximum values of
the angle of incidence but the reflected p-wave arrives to unity for the maximum
angle of incidence; also, the reflected SV-wave starts from and arrives to zero at
the minimum and maximum values of θ that indicate the creation of the reflection
coefficient if θ = 0o and interrupted at θ = 90o.

With the variation of the magnetic field in the presence or absence of initial stress,
it is seen that |Z2| , |Z4| and |Z5| decrease with an increase of the magnetic field
parameter but |Z3| increases, |Z1| decreases with the increasing of the magnetic
field in the presence of initial stress but increases if the initial stress is absence. It
is shown that if the initial stress is absent, |Z1| , |Z2| , |Z3| and |Z5| take on larger
values than the correspond values in the presence of initial stress, and vice versa
for |Z4|.

Fig. 4 displays the amplitudes ratios with the angle of incidence and variation of
the initial stress in the presence or absence of the magnetic field. It is obvious
that |Z1| and |Z5| decrease with the increase of the initial stress;|Z3| increases, |Z2|
decreases in the presence of the magnetic field, increases in the absence of H, vice
versa for |Z4|. Also, we concluded that the absence of the magnetic field makes
small interruption on |Z3| , |Z4| and |Z5| but additional factor on |Z1| and |Z2|.
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Figure 6 Variation of the amplitudes zi (i = 1, 2,. . . , 5) with the angle of incidence of thermal-wave
for variation of magnetic field: H = 0.1, 0.2, 0.3, 0.4, P = 1.1(10)11 (—), P = 0 (...)
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Figure 7 Variation of the amplitudes zi (i = 1, 2,. . . , 5) with the angle of incidence of thermal-wave
for variation of initial stress: P = (1.1, 1.2, 1.3, 1.4) (10)11, H = 0.3 (—), H = 0 (...)
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Figure 8 Variation of the amplitudes zi (i = 1, 2,. . . , 5) with respect to (θ,H) of thermal-wave
with and without variation of initial stress

From Figs. 6–8, it appears that the amplitudes of the reflected p-wave, refracted T-
and p-waves start from their maximum values and decrease to zero at θ = 90o, the
amplitude ratio of the reflected T-wave tends to the unity, on the other hand, the
reflection coefficient for the reflected SV-wave equal zero at θ = {0o, 90o}, increases
to arrive to its maximum value and then decreases with the increasing of angle of
incidence.
Figs. 6 and 8 display the variation of the amplitude ratios Zi (i = 1,2,. . . ,5) with the
angle of incidence of T-wave for variations of the magnetic field, with or without ini-
tial stress. It is shown that all amplitudes increase with an increase of the magnetic
field in the presence and absence of initial stress, Also, it is clear that |Z1| and |Z2|
in the presence of initial stress take on larger values than their corresponding values
in the absence of initial stress; this indicates the positive effect of the initial stress
on the amplitudes ratios, but a negative effect on |Z3| , |Z4| and |Z5|.
Fig. 7 shows the amplitudes ratios with the angle of incidence and variation of
the initial stress in the presence or absence of the magnetic field. It is appear
that |Z1| , |Z2| and |Z3| increase with the increased values of the initial stress but
|Z4| and |Z5| decrease, also, we concluded that the absence of the initial stress makes
small interruption on |Z2| , |Z3| , |Z4| and |Z5|but an additional factor on|Z1|.
Finally, for the incidence SV-wave, Figs. 9-11 display the variation of the amplitudes
ratios Zi (i = 1,2,. . . ,5) with the angle of incidence of SV-wave for variation of
magnetic field and initial stress. It is shown that |Z1| , |Z2| , |Z4| and |Z5|start from
their maximum values arriving to zero at θ = 90o but |Z3| arrives to unity at
θ = 90oand there is a slight change with variation of magnetic field or initial stress.
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Figure 9 Variation of the amplitudes zi (i = 1, 2,. . . , 5) with the angle of incidence of SV-wave
for variation of magnetic field: H = 0.1, 0.2, 0.3, 0.4, P = 1.1(10)11 (—), P = 0 (...)
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Figure 10 Variation of the amplitudes zi (i = 1, 2,. . . , 5) with the angle of incidence of SV-wave
for variation of initial stress: P = (1.1,1.2,1.3,1.4) (10)11, H = 0.3 (—), H = 0 (...)
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Figure 11 Variation of the amplitudes zi (i = 1, 2,. . . ,5) with respect to (θ,H) of SV-wave with
and without variation of initial stress

9. Concluding remarks

We model the effect of initial stress and magnetized on reflection and refraction
of a plane waves at a solid-liquid interface under perfect boundary conditions in
the context of CT theory. The waves amplitudes ratios with initial stress and
magnetic field with the angle of incidence are obtained in the framework of CT
theory investigated numerically and presented graphically.
The following conclusions can be made:
1. The reflected and refracted amplitudes depend on the angle of incidence, initial
stress, and magnetic field, the nature of this dependence is different for different
reflected waves.
2. The initial stress and magnetic field play a significant role and the effect has the
inverse trend for the reflected and transmitted waves.
Finally, it is observed that the reflection and the refraction coefficients strongly
appear in the phenomena that has a lot of applications, especially, in Seismic waves,
Earthquakes, Volcanoes, and Acoustics.
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Nomenclature→
B – Magnetic induction vector,
Cv – Specific heat per unit mass,
eij – Strain components,
→
E – Electric intensity vector,
→
F – Lorentz body forces vector,
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→
h – Perturbed magnetic field vector,
→
H – Magnetic field vector,
→
H
0

– Primary constant magnetic field vector,

→
J – Electric current density vector,
k – Wave number,
K – Thermal conductivity,
P – Initial stress,
S – Entropy per unit mass,
s11, s22,s12Incremental stress components,
T0 – Natural temperature of the medium,
T – Absolute temperature of the medium,
ui – Components of the displacement vector,
αt – Coefficient of linear thermal expansion,
µe – Magnetic permeability,
λ and µ – Lamé’s constants,
δij – Krönecker delta
σij – Components of the stress tensor,
τij – Maxwell’s stress tensor,
τ0 and τ1 – Thermal relaxation times,
ω – Frequency,
−
ω – Magnitude of local rotation,
υ – Phase speed.




