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This paper concentrates on widespread study of parallel manipulator. It focuses on
optimal designing of manipulator which has a large number of application fields. Optimal
design is an important criterion to improve the accuracy of a robot. Through optimal
design a robot can achieve isotropic configurations where the condition number of its
jacobian matrix equals one. In this we are also concentrating on transmission index and
stiffness index along with their plots, which can affect the kinetostatic performance of
the robot. In this the singularity of Gough Stewart platform is also studied.
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1. Introduction

The disadvantages of conservative robot arms have made researchers to think for
an alternative manipulator. Amid other manipulator architectures, parallel manip-
ulators have been given considerable attention. They consists of several kinematic
chains connecting the base to the end-effector (Fig. 1), which allows the actuators
to be located on or near the base of the mechanism, thereby increasing the load-
carrying capacity and leading to high accuracy, high stiffness and very good dynamic
properties. Because of their best performance characteristics parallel manipulators
possesses wide range of applications where these properties are of primary impor-
tance while a limited workspace is acceptable. The most common application of
this type is undeniably in flight simulation. Flight simulation is originally proposed
in Stewart (1965). This mechanism is commonly denoted as the “Stewart platform”
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and it was first proposed by Gough. Therefore, this mechanism is known as the
Gough-Stewart platform.
The limitation of parallel manipulators is that they may lead to singular configura-
tions in which the stiffness of the
Mechanism is lost. This has drawn the attention of several researchers and now this
is a major field of research now. This paper also focuses on parallel manipulator
and develops it in such a way as to make its working condition accurate.
In this paper a six degrees of freedom parallel mechanism is considered for which
the equations of their motion are considered and analysis is carried out.

Figure 1 Gough Stewart Platform with notation

The notations in this paper are followed based on the notations shown in the above
figure. Here, Bi where i = 1, 2, 3, 4, 5, 6 is the base and Pi where i = 1, 2, 3, 4, 5,
6 is the movable pod.
In a Gough-Stewart platform usually there is a fixed base and a mobile platform.
These booth are connected with the help of legs, here there are six legs connecting
the two bases. They are connected via prismatic actuators. The attachments to
the platform, at points Ai, i = 1,...,6, are spherical joints, while those at the base,
at points Bi, i = 1,...,6, are Hooke joints. Hence, the mechanism has six degrees of
freedom. The position and orientation of the platform in space are controlled by
adjusting the length of the six legs.
As shown in Fig. 1, a reference frame R (Oxyz) is fixed to the base and a moving
frame R‘ (O‘x‘y‘z‘) is attached to the platform. Furthermore, the position of the ith
joint on the base point Bi is denoted by vector bi = [bix, biy, biz]T , i = 1,...,6 and the
position of the ith joint on the platform point Ai by vector ai‘ = [aix‘, aiy‘, aiz‘]T ,
i = 1,...,6. Vector bi is a constant vector when expressed in frame R, while vector ai‘
is a constant vector when expressed in frame R‘. Let vector k = [x, y, z]T denote
the position of point O‘ with respect to point O expressed in frame R and let Q
be the matrix representing the rotation from frame R to frame R‘. Further the
position vector of point Ai expressed in frame R, noted Mi, is given by:

Mi = k +Qai (1)

where Mi = [Mix, Miy, Miz]T . Subtracting vector bi from both sides of Eq. (1),
we get:

Mi − bi = k +Qa′i − bi (2)
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Here the left hand side represents a vector connecting point Bi to point Ai, along
the ith leg. Taking the Euclidean norm of both sides of this equation gives us:

ρ2i = ||ai − bi||2 = (k +Q ∗ a′i − bi)T (s+Q ∗ a′i − bi) i = 1, ..., 6. (3)

When above equation is differentiated with respect to time, a set of linear equa-
tions relating the joint rates to the Cartesian velocities is obtained. Two Jacobian
matrices A and B are obtained and the velocity equations can be written as:

AT = B∞ (4)

where T is the six-dimensional twist of the platform and ∞ is the vector of joint
velocities. These vectors are defined as:

T = [kT ′, wT ] ∞ = (∞1.........∞6) (5)

in which the angular velocity of the platform is defined as w and k‘ = [x‘, y‘, z‘]T
is the velocity of point O‘. The above-mentioned Jacobian matrices can then be
written as:

B = diag(∞1.........∞6) (6)

A =

CT
1

.

.

.
CT

6

(7)

with:

Ci =

(
di

Qxai

)
i = 1, ..., 6, (8)

where di is the vector connecting point Bi to point Ai, i.e.,

di = aibi i = 1, ..., 6 (9)

The rotation matrix Q representing the orientation of the platform with respect to
the base:
Q = cos θ cosψ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

cos θ sinψ sinψ sin θ sinφ+ sinψ sin θ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ

 (10)

where ψ, θ, φ are three Euler angles defined according to the convention (Qz, Qy,
Qx).

2. Optimal design

Optimal design is class of experimental designs in the design of experiments that
are optimum relating to some statistical criterion.
Advantages of optimal design:
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1. Optimal designs reduce the experimental cost by permitting statistical models
to be estimated with less number of experimental runs.

2. Optimal designs can lodge various types of factors, such as discrete factors,
process and mixture.

3. Optimization of designs can be done when we constrain the design space.

To make a design optimized we need to make the condition number fed into the
surface mesh and obtain the surface plot. This is one of the methods to get optimized
design which gives an accurate workspace. The surface plot gives us the optimized
design.

3. Performance analysis

3.1. Manipulability

A quality measure for redundant manipulator is called Manipulability index. This
index describes the distance to singular configurations. The approach is based on
analyzing the manipulability ellipsoid that is spanned by the singular vectors of
the Jacobian. we use an extended manipulability measurement in order to consider
constraints that limit the maneuverability in workspace. Such constraints are intro-
duced by joint boundaries and workspace (self-) collisions, but any other constraints
can be incorporated as long as the derivation with respect to joint movements can
be built.
The concept of manipulability of a manipulator was introduced by Yoshikawa. The
manipulability is defined as the square root of the determinant of the product of the
manipulator Jacobian by its transpose. The manipulability is equal to the absolute
value of the determinant of the Jacobian in case of square Jacobian. Let matrix be
K:

µ =
√

(det(K)) (11)

3.2. Condition number

When the determinant of the Jacobian is equal to zero, it means that the manipu-
lator approaches singularities. However, the actual value of the determinant cannot
be used as a practical measure of the degree of ill-conditioning. For this purpose it
is convenient to use the condition number of the Jacobian. It is well known from
the singular value decomposition theorem Condition number of nonsingular square
matrix M defined by:

condM = ||M|| · ||M||

By convention:
cond(M) = α if M singular

The condition number of an n x n matrix numerical value depends on the specific
norm used (indicated by the corresponding subscript), but because of the equiv-
alence of the underlying vector norms, these values can differ by at most a fixed
constant (which depends on n), and hence they are equally useful as quantitative
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measure of conditioning. Condition number of the matrix measures the ratio of
the maximum relative stretching to the maximum relative shrinking that matrix
does to any non-zero vectors. Another way to say that the condition number of
a matrix measures the amount of distortion of the unit sphere (in the correspond-
ing vector norm) under the transformation by the matrix. The larger the condition
number, the more distorted (relatively long and thin) the unit sphere becomes when
transformed by the matrix.
Properties of the condition number:

1. For any matrix M , cond (M) ≥ 1

2. For identity matrix, cond (I) = 1

3. For any matrix M and scalar δ, cond (δA) = cond (A)

4. For any diagonal matrix D = Diag (di), cond (D) = (max |di|)/(min|di|).

3.3. Minimum singular value

In maximum cases the minimum singular value is used efficiently for indicating
whether the determinant is near to zero. The minimum singular value changes more
radically near singularities than the other singular values. In a minimum singular
value graph the changes of the minimum singular values (msv) of the Jacobian over
the workspace with constant orientation. The orientation is the same as for the
obtained reciprocal condition numbers.

3.4. Transmission index

This is another criterion to know the performance whether it might be kinematic or
dynamic. This index is important and it depends on the identity matrix combined
with the norm movable pad matrix of the parallel manipulator in a matrix form.

3.5. Stiffness index

The deformations or compliant displacements in the geometry of a body are caused
due to application of load on the body. Stiffness can be defined as the capacity
of a mechanical system to sustain loads without excessive changes of its geometry
(Rivin, 1999). Moreover, the stiffness of a body can be defined as the amount of
force that can be applied per unit of compliant displacement of the body (Nof,
1985), or the ratio of a steady force acting on a deformable elastic medium to the
resulting displacement. Compliant displacements in a multibody robotic system
allow for mechanical float of the end-effector relative to the fixed base. This produces
negative effects on static and fatigue strength, efficiency (friction losses), accuracy,
and dynamic stability (vibrations). In this paper stiffness index is taken and plotted
showing the performance.

4. Methodology

First of all the robot motion is analyzed and taken into consideration. Then equa-
tions are developed based on how the manipulator motion should be. The base
values of the robot geometric position are given as the input values for the program
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code written in MATLAB. A matrix C is given using which we can find the position
of movable pod. These are fed into an equation along with the rotation angles and a
vector. Using these given inputs in the equations for Manipulability analysis, Min-
imum singular value, Condition number, Transmissibility index and stiffness index
are found. Here we get a very large matrix as we get the whole points through
which the robot passes. The above obtained values are fed into the code written to
produce plots showing different indices.

5. Result

All the results are obtained when the coordinates of the tool are x = 2; y = 3; z = 10.
Here we are considering only few performance analysis factors like Manipulability
index, Condition number and minimum singular value.

5.1. Manipulability index

Figure 2 3D plot of Manipulability index of the manipulator

5.2. Condition number
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Figure 3 3D plot of Manipulability index of the manipulator

Figure 4 Plot showing the condition number
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5.3. Minimum singular value

Figure 5 Plots of minimum singular value

6. Conclusion

In this paper, performance indexes are discussed as measures of kinematic capabili-
ties of manipulators. Dexterity and manipulability of manipulators are considered.
All obtained results for the performance indexes are graphically visualized. The pre-
sented graphs allow a comparison of the different performance indexes, i.e., what
kind of similarities exist. Some of the known indexes are considered and some new
indexes are introduced. The presented graphical examples for the performance of
a manipulator can be easily interpreted and also they can help in application and
design of manipulators.
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