
Exercise 3
Identification of parameters of the vibrating system with one degree of freedom

Goal

To determine the value of the damping coefficient, the stiffness coefficient and the amplitude of 
the vibration excitation in system with one degree of freedom. These are to be understood as 
parameters of the vibrating system.

Fig. 1 Scheme of the rig

Drawing  at  Fig.  1  presents  physical  model  of  the  vibrating  system which  possesses  the 
following elements:

• stiff beam beam connected to the support rotating node O,
• set of supporting coil springs with stiffness coefficient k [N/m],
• oil damper with damping coefficient c [kg/s],
• driving spring with stiffness coefficient k1 [N/m].

A spring with a stiffness factor k1 is connected to the eccentric pin on the driving motor shaft. 
Rotation of the shaft creates a kinematic forcing of the upper end of this springs, approximately 
described as a sinωt. Due to the force, the beam swings out of the balance position by an angle 
φ.  The deflection of  the beam is  measured by a  linear  displacement  sensor,  defining the 
displacement x of the chosen point of the beam, being lx away from the axis of rotation.

Bo ϕ̈+c lc
2 ϕ̇+(k+k1)ϕ=k1 lk a sinωt  (1)

where: Bo  – is mass moment of inertia relative to its rotation axis, then lc, lk – distances [m], 
a – eccentricity i.e., the excitation amplitude [m].

Dividing Eq, (1) by Bo and multiplying by lx we get:

lx ϕ̈+
c lc

2

Bo
lx ϕ̇+

k+k1

Bo
lx ϕ=

k1 lk a lx
B0

sinωt  (2)

Introducing:

lx ϕ̈= ẍ ,    
c lc

2

Bo
=2h ,    lx ϕ̇= ẋ ,    

k+k1

Bo
=α2 ,    lx ϕ=x ,    

k1 lk alx
B0

=q , (3)
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we rewrite Eq. (1) as:

ẍ+2h ẋ+α2 x=q sinωt  (4)
where:

2h - damping [1/s],
2 - natural frequency of the system [1/s2],
q - kinematic excitation amplitude [m/s2],    

Fig. 2

The specific solution of (4) is function (5) which describes oscillatory motion of the model:

x=A sin (ωt+β ) , (5)

where A is amplitude of the excited oscillations [m] and β – defines phase angle shift between
actual value of the kinematic excitation and the model oscillations [rad].
Amplitude A is defined as (from the solution):

A= q

√ (α2−ω2 )2+4 h2ω2
. (6)

As ω is varying in mathematical sense from 0 to infinity, values the amplitude A can take should 
be understood as a function A(ω), where ω is the function independent variable. Its general form 
takes graphical representation shown in the drawing below.

Fig. 3 General form of the function A(ω) – broken line overprinted on typical values collected from experimental 
measurements – continuous line

As Eq. (6) contains yet unknown values of α, h, q, these values are to be treated as parameters
which we are looking for in the exercise. The way reaching their values can be as following:

• Determine experimental measurements graph as in Fig. 3 by measuring amplitudes of 
the beam at different excitation values at the rig (the continuous line)

• Amplitude at  very small  (practically close to zero) excitation  ω is  marked as  AR0. 
Maximal value of the beam motion appears at resonance frequency ωm marked as Arm.

Theoretical resonance graph shown with broken line in Fig. 3 should be a result of calculations 
using formula (6) with some assumptions.
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We assume both graphs have to fulfill three conditions:

1. For excitation frequency ω close to zero both amplitudes A and AR0 are to be the same:

A (0 )= q

√ (α2−02 )2+4 h2 02
= q

α2 =AR 0 . (7)

2. At excitation frequency equal to the natural (resonance) frequency ωm, both amplitudes 
A and Arm are to be the same:

A (ωm)=
q

√ (α2−ωm
2 )2+4 h2ωm

2
=ARm . (8)

3. At excitation equal to the natural (resonance) frequency ωm, both amplitudes A and 
ARm reach their maximum values (and the following condition is to be fulfilled – why?)::

∂ A
∂ω (ω=ωm ) =

q [−4ωm (α2−ωm
2 )+8h2ωm ]

2√((α2−ωm
2 )2+4 h2ωm

2 )3
= 0

(9)

When Eqs. (7), (8), (9) are understood as set of algebraic equations they can be converted to the
following results:

q=
ωm

2 AR 0

ξ
,    α2=

ωm
2

ξ
,    2h=ωm√ 1

2ξ
−1, gdzie ξ=√1−

AR 0
2

ARm
2 (10)

which allows to calculate numerical values of the unknown parameters , h, q.

Next, we can identify real rig parameters’ values as:

c=
2hB0

lc
,    k1=

q B0

a lk lx
,   k=B0α

2−k1 . (11)

Earlier, some physical values were measured or determined from basic engineering formulas:

B0=1.38  kg m2 ,   lc=0.54  m,  lk=0.54  m,  lx=0.24  m, a=0.003 m. (12)

Przebieg ćwiczenia:

1. Measure the AR amplitude vibrations for different angular velocity values ω; number of
2. measurements should be about 15. Carefully determine the value of ωm, for which the 

amplitude of vibrations reaches the maximum value of ARm. Determine the amplitude 
value AR0 at close to zero excitation frequency. Copy your results into the table as below.

3. Calculate the parameter values , h, q, using formula (10).
4. Calculate the amplitude values A of the theoretical resonance plot using the formula (6) 

for those  values at which the AR was measured.
5. Draw both, experimental and theoretical resonance graphs.
6. Calculate the values of the real system parameters k, c, k1 using (11) and the values
7. of the parameters given in (12).
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Note: take care of units used.
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Date: ...........…  Name and Family name: ..............................… Group: ..........
Mark: .............

Exercise 3 Report
Identification of parameters of the vibrating system with one degree of freedom

Measurements

 AR A

m= …... ARm= …... AR0= …...

Calculation of the physical model parameters:

ξ=√1−
AR 0

2

ARm
2 = ..... [ ] q=

ωm
2 AR 0

ξ
= ....... [ ] α2=

ωm
2

ξ
=....... [ ] 2h=ωm√ 2−2ξ

ξ
=... [ ]

Formula for calculation of the theoretical model amplitude:

A= q

√ (α2−ω2 )2+4 h2ω2
= .......... [ ]

B0=1.38  kg m2 ,   lc=0.54  m,  lk=0.54  m,  lx=0.24  m, a=0.003 m.

Calculation of the real model parameters:

c=
2hB0

lc
=      [   ]               k1=

q B0

alk lx
=              [   ]                  k=

B0a
2

lk
2 −k1=  [   ]  
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