Exercise 3

Identification of parameters of the vibrating system with one degree of freedom

Goal

To determine the value of the <u>damping coefficient</u>, the <u>stiffness coefficient</u> and the <u>amplitude of the vibration excitation</u> in system with one degree of freedom. These are to be understood as parameters of the vibrating system.

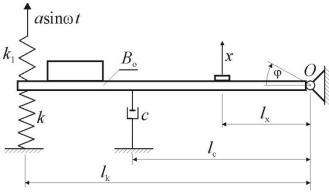


Fig. 1 Scheme of the rig

Drawing at Fig. 1 presents physical model of the vibrating system which possesses the following elements:

- stiff beam beam connected to the support rotating node O,
- set of supporting coil springs with stiffness coefficient k [N/m],
- oil damper with damping coefficient c [kg/s],
- driving spring with stiffness coefficient k_1 [N/m].

A spring with a stiffness factor k_1 is connected to the eccentric pin on the driving motor shaft. Rotation of the shaft creates a kinematic forcing of the upper end of this springs, approximately described as $a \sin(\omega t)$. Due to the force, the beam swings out of the balance position by an angle φ . The deflection of the beam is measured by a linear displacement sensor, defining the displacement x of the chosen point of the beam, being l_x away from the axis of rotation.

$$B_o \ddot{\phi} + c l_c^2 \dot{\phi} + (k + k_1) \phi = k_1 l_k a \sin \omega t \tag{1}$$

where: B_o — is mass moment of inertia relative to its rotation axis, then l_c , l_k — distances [m], a — eccentricity i.e., the excitation amplitude [m].

Dividing Eq. (1) by B_0 and multiplying by l_x we get:

$$l_{x}\ddot{\phi} + \frac{c l_{c}^{2}}{B_{o}} l_{x}\dot{\phi} + \frac{k + k_{1}}{B_{o}} l_{x}\phi = \frac{k_{1} l_{k} a l_{x}}{B_{0}} \sin \omega t$$
 (2)

Introducing:

$$l_x \ddot{\phi} = \ddot{x}, \quad \frac{c \, l_c^2}{B_c} = 2h, \quad l_x \dot{\phi} = \dot{x}, \quad \frac{k + k_1}{B_c} = \alpha^2, \quad l_x \phi = x, \quad \frac{k_1 l_k a \, l_x}{B_c} = q,$$
 (3)

we rewrite Eq. (1) as:

where:

$$\ddot{x} + 2h\dot{x} + \alpha^2 x = q \sin \omega t$$

$$2h \quad -\text{damping } [1/s],$$

$$\alpha^2 \quad -\text{natural frequency of the system } [1/s^2].$$
(4)

Fig. 2

 α^2 - kinematic excitation amplitude [m/s²],

The specific solution of (4) is function (5) which describes oscillatory motion of the model:

$$x(t) = A\sin(\omega t + \beta),\tag{5}$$

where A is amplitude of the excited oscillations [m] and β – defines phase angle shift between actual value of the kinematic excitation and the model oscillations [rad]. Amplitude A is defined as dependence on varying excitation frequency ω :

$$A(\omega) = \frac{q}{\sqrt{\left(\alpha^2 - \omega^2\right)^2 + 4h^2\omega^2}}.$$
 (6)

As ω is varying in mathematical sense from 0 to infinity, values the amplitude A can take should be understood as a function $A(\omega)$, where ω is the function independent variable. Its general form takes graphical representation shown in Fig. 3.

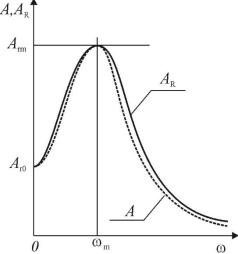


Fig. 3 General form of the function $A(\omega)$ – broken line overprinted on typical values collected from experimental measurements – continuous line

As Eq. (6) contains yet unknown values of α , h, q, these values are to be treated as parameters which we are looking for in the exercise. The way reaching their values can be as following:

- Determine experimental measurements graph as in Fig. 3 by measuring amplitudes of the beam at different excitation values at the rig (the continuous line)
- Amplitude at very small (practically close to zero) excitation ω is marked as A_{R0} . Maximal value of the beam motion appears at resonance frequency ω_m marked as A_{rm} .

Theoretical resonance graph shown with broken line in Fig. 3 should be a result of calculations using formula (6) with some assumptions.

We assume both graphs have to fulfill three conditions:

1. For excitation frequency ω close to zero both amplitudes A and $A_{R\theta}$ are to be the same:

$$A(0) = \frac{q}{\sqrt{(\alpha^2 - 0^2)^2 + 4h^20^2}} = \frac{q}{\alpha^2} = A_{R0}.$$
 (7)

2. At excitation frequency equal to the natural (resonance) frequency ω_m , both amplitudes A and A_{rm} are to be the same:

$$A(\omega_m) = \frac{q}{\sqrt{\left(\alpha^2 - \omega_m^2\right)^2 + 4h^2\omega_m^2}} = A_{Rm}.$$
 (8)

3. At excitation equal to the natural (resonance) frequency ω_m , both amplitudes A and A_{Rm} reach their maximum values (and the following condition is to be fulfilled – why?)::

$$\frac{\partial A}{\partial \omega} = \frac{q \left[-4 \omega_m \left(\alpha^2 - \omega_m^2 \right) + 8 h^2 \omega_m \right]}{2 \sqrt{\left[\left(\alpha^2 - \omega_m^2 \right)^2 + 4 h^2 \omega_m^2 \right]^3}} = 0, \quad \text{for} \quad \omega = \omega_m$$
(9)

When Eqs. (7), (8), (9) are understood as set of algebraic equations they can be converted to the following results:

$$q = \frac{\omega_m^2 A_{R0}}{\xi}, \quad \alpha^2 = \frac{\omega_m^2}{\xi}, \quad 2h = \omega_m \sqrt{\frac{1}{2\xi} - 1}, \text{ where } \xi = \sqrt{1 - \frac{A_{R0}^2}{A_{Rm}^2}}$$
 (10)

which allows to calculate numerical values of the unknown parameters α , h, q.

Next, we can identify real rig parameters' values as:

$$c = \frac{2hB_0}{l_c^2}, \quad k_1 = \frac{qB_0}{al_k l_x}, \quad k = B_0 \alpha^2 - k_1. \tag{11}$$

Earlier, some physical values were measured or determined from basic engineering formulas:

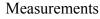
$$B_0 = 1.38 \text{ kg m}^2$$
, $l_c = 0.54 \text{ m}$, $l_k = 0.54 \text{ m}$, $l_x = 0.24 \text{ m}$, $a = 0.003 \text{ m}$. (12)

Course of experiment:

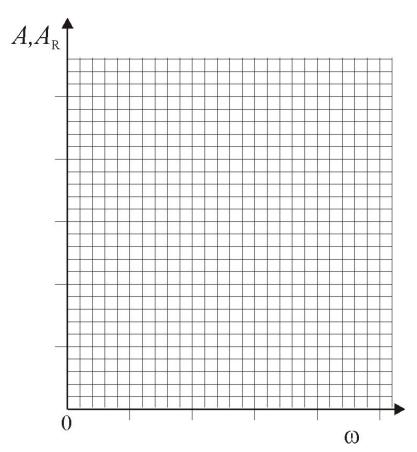
- 1. Measure the AR amplitude vibrations for different angular velocity values ω ; number of
- 2. measurements should be about 15. Carefully determine the value of ω_m , for which the amplitude of vibrations reaches the maximum value of A_{Rm} . Determine the amplitude value A_{R0} at close to zero excitation frequency. Copy your results into the table as below.
- 3. Calculate the parameter values α , h, q, using formula (10).
- 4. Calculate the amplitude values A of the theoretical resonance plot using the formula (6) for those ω values at which the A_R was measured.
- 5. Draw both, experimental and theoretical resonance graphs.
- 6. Calculate the values of the real system parameters k, c, k_1 using (11) and the values
- 7. of the parameters given in (12).

Note: take care of units used.

Exercise 3 Report Identification of parameters of the vibrating system with one degree of freedom



A_{R}	A
	A _R



$$\omega_m = \dots$$

$$A_{\rm Rm} = \dots$$

$$A_{\rm R0}=$$

Calculation of the physical model parameters:

$$\xi = \sqrt{1 - \frac{A_{R0}^2}{A_{Rm}^2}} = \dots [] \quad q = \frac{\omega_m^2 A_{R0}}{\xi} = \dots [] \quad \alpha^2 = \frac{\omega_m^2}{\xi} = \dots [] \quad 2h = \omega_m \sqrt{\frac{2 - 2\xi}{\xi}} = \dots []$$

Formula for calculation of the theoretical model amplitude:

$$A = \frac{q}{\sqrt{(\alpha^2 - \omega^2)^2 + 4h^2\omega^2}} = \dots$$

 $B_0 = 1.38 \text{ kg m}^2$, $l_c = 0.54 \text{ m}$, $l_k = 0.54 \text{ m}$, $l_x = 0.24 \text{ m}$, a = 0.003 m.

Calculation of the real model parameters:

$$c = \frac{2hB_0}{l_c^2} = \dots \qquad [] \qquad k_1 = \frac{qB_0}{al_k l_x} = \dots \dots [] \qquad k = \frac{B_0 a^2}{l_k^2} - k_1 = \dots \dots []$$